
Spatio-temporal control of network activity through

gain modulation in cortical circuit models

Jake P. Stroud

Wadham College
University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity term 2018

ii

To Mary Harrison, who loved stories, but sadly

only heard the start of this one.

iii

iv

Acknowledgements

I would like to thank the Doctoral Training Centre for giving me the opportunity to

study for a DPhil at Oxford University and the Engineering and Physical Sciences

Research Council for funding my research. I also thank Wadham College for pro-

viding an amazing college environment and enabling me to thrive during my time

at Oxford.

Many people have provided invaluable scientific guidance to me during my

DPhil. Firstly, I express deep gratitude to my three supervisors: Tim P. Vogels,

Mason A. Porter, and Guillaume Hennequin. Tim encouraged me to freely explore

research questions and to push ideas as far as possible until we had exhausted

all potential avenues. He guided me on how to be both meticulous and creative

when designing figures and how to tell an engaging story with my scientific re-

sults. Mason taught me new levels of precision in both my mathematical and non-

mathematical exposition, and Guillaume taught me to always question my results

and revealed to me just how much I have left to learn.

I also thank everyone in the Vogels lab. I enjoyed every minute of being there;

from lab meetings to conferences, New College lunches to lab retreats, or just

chatting over a cup of tea in the office. I looked forward to coming into the lab

every day and I will be sad to leave. In particular, I thank Georgia Christodoulou,

Rui P. Costa, Yayoi Teramoto Kimura, and Friedemann Zenke. I am also especially

grateful to Everton J. Agnes and William F. Podlaski who were unfortunate enough

to endure sitting next to me for over 3 years. Both have contributed greatly to my

scientific thinking.

I am also in great debt to the love and support from my friends and family.

My parents have always supported my ambitions, no matter how big or small. In

particular, my mum stopped at nothing to give me the great education that I have

been lucky enough to have. Finally, I thank Kathi for being a wonderful and constant

source of joy and support.

v

vi

Abstract

Animals perform an extraordinary variety of movements over many different

time scales. To support this diversity, the motor cortex (M1) exhibits a similarly rich

repertoire of activities. Although recent neuronal-network models capture many

qualitative aspects of M1 dynamics, they can generate only a few distinct move-

ments all with the same duration. Therefore, these models can still not explain how

M1 efficiently controls movements over a wide range of shapes and speeds. In

this thesis, we demonstrate that simple modulation of neuronal input–output gains

in recurrent neuronal-network models with fixed connectivity can dramatically reor-

ganise neuronal activity and thus downstream muscle outputs. Consistent with the

observation of diffuse neuromodulatory projections to M1, our results suggest that

a relatively small number of modulatory control units provide sufficient flexibility

to adjust high-dimensional network activity on behaviourally relevant time scales.

Such modulatory gain patterns can be obtained through a simple reward-based

learning rule. Novel movements can also be assembled from previously learned

primitives, thereby facilitating fast acquisition of hitherto untrained muscle outputs.

Moreover, we show that it is possible to separately change movement speed while

preserving movement shape, thus enabling efficient and independent movement

control in space and time. Our results provide a new perspective on the role of

neuromodulatory systems in controlling cortical activity and suggest that modula-

tion of single-neuron responsiveness is an important aspect of learning.

vii

Contents

1 Introduction 1

1.1 Modelling neuronal firing-rate dynamics 4

1.2 Modelling recurrent neuronal networks 8

1.2.1 The input–output gain function f 10

1.2.1.1 A linear input–output gain function 10

1.2.1.2 Stability of a linear dynamical system 10

1.2.1.3 A nonlinear input–output gain function 11

1.2.1.4 A strictly positive input–output gain function 13

1.2.2 Network architecture . 14

1.2.3 Non-normal amplification . 16

1.2.4 Stability-optimised circuits . 17

1.3 Cortical motor circuits . 21

1.4 Why study gain modulation in cortical motor circuits? 23

2 Global gain modulation in recurrent neuronal networks 25

2.1 Introduction . 25

2.2 Methods . 28

2.3 Stability of neuronal activity . 30

2.3.1 Analytical results . 30

2.3.2 Numerical results . 32

viii

2.4 Relationship between eigenvalues and changes in neuronal gain

and time constant τ . 34

2.5 Effects of global gain modulation on transient neuronal

activity . 36

2.6 Global gain modulation correlates with network output

variability . 38

2.7 Conclusions and discussion . 43

2.A Definitions and theorems . 46

2.B Main analytical result from Chapter 2 and proof 48

2.C Supplementary figures . 52

3 Single-neuron gain modulation 53

3.1 Introduction . 54

3.2 Methods . 55

3.2.1 Neuronal dynamics . 56

3.2.2 Creating target network outputs reminiscent of muscle activity 57

3.2.3 Network output . 58

3.3 Effects of changing the gain of one neuron in a recurrent neuronal

network . 58

3.4 A reward-based learning rule for single-neuron input–output gains . 60

3.5 Learning novel network outputs through gain modulation 64

3.6 Learning through gain modulation in different models 67

3.7 Investigating the effects of more strongly nonlinear neuronal dynamics 69

3.8 Conclusions and discussion . 70

3.A Supplementary simulation details for Fig. 3.4 73

3.B Alternative learning rule . 74

4 Coarse, group-based learning of neuronal gains 76

4.1 Methods . 77

ix

4.1.1 Generating groups for group-based gain modulation 77

4.2 Learning one target movement . 78

4.3 Learning multiple movements using a fixed grouping 80

4.4 Effects of network size when learning with random groups 83

4.5 Increasing task complexity . 85

4.6 Conclusions and discussion . 86

4.A Supplementary simulation details . 88

4.A.1 Details for Fig. 4.2 . 88

4.A.2 Details for Fig. 4.4 . 88

5 Learned gain patterns can provide motor primitives for novel move-

ments 90

5.1 Methods . 92

5.1.1 Creating libraries of learned movements 92

5.2 Learned gain patterns can be combined to generate new desired

movements . 93

5.3 Analysis of linear combinations of gain patterns and their associated

neuronal dynamics . 96

5.4 Conclusions and discussion . 99

5.A Supplementary simulation details . 101

5.B Supplementary figures . 104

6 Gain modulation can control movement speed 107

6.1 Introduction . 108

6.2 Methods . 109

6.2.1 Neuronal dynamics . 109

6.2.2 Creating target muscle activity 111

6.2.3 Network output . 112

6.3 Learning slow-movement variants through gain modulation 112

x

6.3.1 Training using our learning rule 113

6.3.2 Training using back-propagation 114

6.3.3 Controlling the speed of multiple movements associated with

different initial conditions . 116

6.4 Smoothly controlling the speed of movements 117

6.5 Joint control of movement shape and speed through gain modulation 119

6.6 Learning gain-pattern primitives to control movement shape and speed121

6.7 Conclusions and discussion . 123

6.A Supplementary simulation details . 126

6.A.1 Details for Fig. 6.2 . 126

6.A.2 Details for Fig. 6.3 . 127

6.A.3 Details for Fig. 6.4 . 128

6.A.4 Details for Figs. 6.5, 6.10, and 6.11 129

6.B Supplementary figures . 131

7 Conclusions and future work 135

Appendix A Solution of linear neuronal dynamics using eigenvectors

and eigenvalues 139

Appendix B Eigenvalues of a matrix following addition of a diagonal

matrix 141

Appendix C Algorithmic procedure for generating stability-optimised

circuits and finding preferred initial conditions 142

C.1 Creating stability-optimised circuits 142

C.2 Finding preferred initial conditions 147

Appendix D Measuring error in network output 149

Bibliography 150

xi

xii

We will never have a perfect world, and it would be

dangerous to seek one. But there is no limit to the

betterments we can attain if we continue to apply

knowledge to enhance human flourishing.

— Steven Pinker

xiii

xiv

CHAPTER 1

Introduction

Most animals are endowed with a relatively dense collection of interconnected

nerve cells (i.e., neurons) that we call a brain. This collection of neurons enables

processing of sensory information, decision-making, and subsequent motor output

commands. Such neural computations are normally more elaborate than merely

sensing and reacting to the environment. For example, sponges can react to en-

vironmental changes even though they have no nervous system and bacteria can

detect chemical gradients and navigate accordingly.

The complexity of brains and the functions they can perform vary widely across

the animal kingdom. For example, the nematode worm (C. elegans) has only 302

neurons in its nervous system, yet it can remember and respond to many different

odours and also exhibits social behaviours (de Bono and Villu Maricq, 2005). In

contrast, an adult human brain contains on the order of 100,000,000,000 neurons.

Such a large network of neurons enables us to, among other things, perform com-

plex skilled movements such as hitting a tennis ball consistently and accurately

over a long period of time and in such a way that you increase the probability of

your opponent losing the point (and hopefully the match!). In fact, it has been

1

proposed that the only reason that we have a brain is to produce adaptable and

complex movements (Wolpert, 2011). Additionally, some strategy games, such as

the board game ‘Go’ (which many thought could only be played to a high level by

humans because of their capacity for complex cognitive decision-making), can now

be played at superhuman levels by computers using modern machine learning al-

gorithms. However, it has proved incredibly challenging for machines to perform

dexterous movements such as pouring water from a bottle into a glass — which

we might consider is a substantially easier task than playing the world’s best Go

player.

Even though technology and fields such as machine learning have advanced

significantly over recent decades, we are still unable to accurately and thoroughly

reproduce the activity of the nervous system of even C. elegans, which is one of the

simplest nervous systems in the animal kingdom (see www.openworm.org for cur-

rent progress). Although the entire connectome of C. elegans has been mapped

(White et al., 1986), the approximate 3,000 connections (called synapses), enable

complex dynamical interactions between the neurons and it is difficult to under-

stand how stimulating one region affects another and ultimately how the animal’s

behaviour is impacted.

This difficulty arises in part because there are many complex phenomena in-

volved in the interactions between neurons. We now give a very brief overview of

such phenomena. Neurons are effectively small electrical input–output units and

they primarily communicate with each other by sending voltage spikes called ‘ac-

tion potentials’. When a neuron receives a sufficient input current caused by incom-

ing spikes arriving from other neurons, the neuron’s membrane voltage suddenly

spikes itself and then ultimately returns to a ‘resting’ voltage. This voltage spike

then propagates down the neuron’s axon to all synapses with which the neuron is

a presynaptic partner. At most synapses, the presynaptic arrival of an action poten-

tial triggers the release of certain chemicals called neurotransmitters. These chem-

2

www.openworm.org

icals move across the synapse to the postsynaptic neuron and bind with receptor

molecules. These receptors control the flow of small charged particles (called

ions) across the membrane of the postsynaptic neuron. Certain combinations of

neurotransmitters and ions will cause either the postsynaptic neuron’s membrane

voltage to increase (called excitation) or decrease (called inhibition). Depending

on the timing of arriving spikes, the type of ions and neurotransmitters involved,

the location on the cell of the arriving spikes, the presence of neuromodulators

(e.g., dopamine), the type of neurons interacting and many other phenomena, one

can obtain a large range of different neuronal activities. Additionally, most synap-

tic connection strengths can change over time in what is called synaptic plasticity.

For example, if two connected neurons are active at the same time, one typically

observes an increase in their connection strength (Bliss and Collingridge, 1993;

Cruikshank and Weinberger, 1996; Hebb, 1949).

This is just a small glimpse into the complexity of neuronal circuits. To aid our

understanding of this complexity, over approximately the last 50 years, researchers

in the field of computational neuroscience have built models that help to explain

existing experimental data and can also generate new predictions for future exper-

iments. Such models typically involve sets of differential equations which can be

studied either analytically or by running simulations on a computer.

This thesis builds on such computational approaches for studying the dynamics

of networks of neurons. We focus in particular on neuronal-network models that

exhibit dynamics reminiscent of cortical circuits involved in motor control (e.g., pri-

mary motor cortex). In Section 1.1, we introduce how one can model the firing rate

of a single neuron receiving multiple presynaptic inputs. In Section 1.2, we show

how one can model the firing rate of a recurrently connected network of neurons

and we introduce several important aspects of such models that are relevant for

this thesis. In Section 1.3, we discuss cortical motor circuits and finally, in Section

1.4, we provide some motivation of the main topic of research in this thesis.

3

1.1 Modelling neuronal firing-rate dynamics

In this thesis, we use relatively abstracted models of neuronal activity in which we

model neuronal firing rates (we call these ‘rate models’ in the following discus-

sion). We do this for several reasons. One reason is that such simplified models

can enable greater analytical tractability; this becomes particularly beneficial when

studying networks of model neurons (which we discuss in the next paragraph).

Although many methods for analysing the dynamics of networks of spiking neu-

rons have been developed over the last few decades (Dayan and Abbott, 2001;

Gerstner and Kistler, 2002; Gerstner et al., 2014), many of these methods rely on

mean-field analyses, which themselves depend upon several assumptions (such

as assuming a large number of neurons or random connectivities). For the rate

models that we study in this thesis, many useful methods from dynamical systems

(Strogatz, 2014; Teschl, 2012; Wiggins, 2003) and linear algebra (Strang, 2016)

can generate precise predictions of the behaviour of such simplified neural mod-

els. There is the additional possibility that some of the conclusions that we reach

regarding the simplified rate models may also extend to more biologically realistic

spiking models.

Another reason for using rate models is that many of the key experimental re-

sults regarding cortical motor circuit dynamics, which is the main topic of this the-

sis, pertain to low-dimensional activity patterns of motor cortex (Afshar et al., 2011;

Churchland et al., 2012; Gallego et al., 2017; Shenoy et al., 2013) and fundamental

computational mechanisms operating at the neural population level (Russo et al.,

2018). Furthermore, there is growing experimental evidence that motor cortex op-

erates as an autonomous (i.e., time-invariant) dynamical system (Churchland and

Cunningham, 2014; Churchland et al., 2010, 2012; Kao et al., 2015) where pre-

movement activity sets the initial condition for the neural system whose subsequent

evolution produces desired muscle activity. (At least for fast ballistic movements

4

where proprioceptive feedback does not affect the movement.) That is, many ex-

perimental results suggest that the population activity of cortical motor circuits ap-

pears more relevant for understanding how the brain performs motor tasks than

single-neuron firing rates or even single spike events. Therefore, modelling motor

cortex as an autonomous dynamical system and using methods from dynamical-

systems theory to study the behaviour of such a system seems natural. In other

words, we may not be sacrificing much in terms of relevant biological phenomena

by using such a simplified model. In fact, it is more likely that much will be gained

from taking such a perspective, particularly given the recent experimental findings

mentioned above.

Before we introduce the type of models that we primarily use in this thesis, we

first present how one can model the firing rate of a single postsynaptic neuron that

receives multiple independent inputs from N presynaptic neurons. We follow the

derivation given in Dayan and Abbott (2001), but many similar derivations exist

(e.g., see Gerstner et al. (2014); Miller and Fumarola (2012); Wilson and Cowan

(1972)).

To understand how a neuron’s firing rate depends on its synaptic inputs, we

must first determine how a neuron’s total synaptic current (which we denote by Is)

depends on such synaptic inputs. Consider a neuron receiving input from a sin-

gle presynaptic neuron i that has a synaptic connection ‘weight’ (i.e., the strength

of the synaptic connection) wi (see Fig. 1.1a). Although there is a rich literature

regarding the dynamics of how neurons influence one another’s activities through

complex synaptic connections (Abbott and Nelson, 2000; Dayan and Abbott, 2001;

Gerstner et al., 2014; Montgomery and Madison, 2004; Redondo and Morris, 2011;

Ziegler et al., 2015), firing-rate models typically omit describing such complex pro-

cesses that occur at synapses. Instead, a synaptic connection is commonly rep-

resented by a single scalar weight value. The weight wi can either be positive (for

excitatory synapses) or negative (for inhibitory synapses). Biologically, neurons

5

Presynaptic neuron
with firing rate

Postsynaptic neuron
with firing rate v

a b

...

...

Synaptic
weight wi

i = 1 i = 2 i = 3 i = N

ri

Figure 1.1: An illustration of one postsynaptic neuron receiving presynaptic inputs. a,

One postsynaptic neuron receiving one presynaptic input. b, One postsynaptic neuron

receiving multiple independent presynaptic inputs from N other neurons.

either have only positive outgoing weights or only negative outgoing weights; this

is commonly called Dale’s law (Strata and Harvey, 1999).

Getting back to our example — if an action potential (i.e., a ‘spike’) arrives

at this synapse from the presynaptic neuron at time t = 0, the synaptic current

at time t ≥ 0 generated at the soma of the postsynaptic neuron is commonly

written as wiK(t), where K(t) = e−t/τ/τ is the synaptic kernel (Dayan and Abbott,

2001). The synaptic kernel K(t) describes the temporally evolving synaptic current

at the soma in response to a presynaptic spike arriving at time t = 0. There are

many anatomical and molecular phenomena that affect this temporal response.

However, for simplicity — and following a large body of previous literature (Dayan

and Abbott, 2001; Gerstner et al., 2014) — we assume such a functional form for K

and we also assume the same form for all synapses. This allows greater analytical

tractability and still provides accurate descriptions of the current at the soma due

to synaptic inputs under many conditions (Dayan and Abbott, 2001; Gerstner et al.,

2014).

We now consider a sequence of multiple spikes that arrive at this synapse at

times tj. Assuming that the current generated by independent spike arrivals at the

6

synapse sum linearly, the total synaptic current at time t arising from this sequence

of presynaptic spikes is given by

wi
∑
tj<t

K(t− tj) = wi

∫ t

−∞
K(t− s)ρi(s)ds , (1.1)

where ρi(s) =
∑

j δ(s − tj) is the neural response function, which describes the

spike sequence as a sum of Dirac δ functions (Dayan and Abbott, 2001).

For a firing-rate model, the next step is to replace the neural response function

ρi(s) by the firing rate ri(s) of the presynaptic neuron, so that the postsynaptic input

is now given by

wi

∫ t

−∞
K(t− s)ri(s)ds . (1.2)

If this is the only input to the postsynaptic neuron, the total synaptic current Is is

described by Eqn. (1.2). However, if this neuron receives multiple synaptic inputs

from synapses i = 1, . . . , N (see Fig. 1.1b), then, assuming that the effect of cur-

rents arriving from multiple synapses sum linearly, we can sum over them and their

associated presynaptic firing-rate activities by writing

Is =
N∑
i=1

wi

∫ t

−∞
K(t− s)ri(s)ds . (1.3)

To describe the temporally evolving synaptic current Is, we take the time deriva-

tive of Eqn. (1.3) to obtain

dIs
dt

=
d

dt

N∑
i=1

wi

∫ t

−∞
K(t− s)ri(s)ds (1.4)

=
1

τ

N∑
i=1

wi
d

dt

∫ t

−∞
e−

(t−s)
τ ri(s)ds

=
1

τ

N∑
i=1

wi

(
dt

dt

[
e

(s−t)
τ ri(s)

]∣∣∣∣
s=t

− d(−∞)

dt

[
e

(s−t)
τ ri(s)

]∣∣∣∣
s=−∞

+

∫ t

−∞

∂e
(s−t)
τ

∂t
ri(s)ds

)

=
1

τ

N∑
i=1

wi

(
r(t)−

∫ t

−∞
K(t− s)ri(s)ds

)

=
1

τ

(
N∑
i=1

wiri(t)− Is
)
,

7

where we used the Leibniz integral rule to go from the second to the third line and

we used Eqn. (1.3) to get to the final line. We therefore obtain

τ
dIs
dt

= −Is +
N∑
i=1

wiri(t) , (1.5)

with some initial condition Is(t = 0) = I0.

The final step we need is to model how the firing rate of the postsynaptic neuron

depends on the total synaptic current Is at the soma. For a constant synaptic

current, the firing rate v of the postsynaptic neuron can be expressed as v = f(Is),

where f is called the input–output gain function or f -I curve (Dayan and Abbott,

2001). This function describes how the steady-state firing rate depends upon the

synaptic current and is often taken to be a sigmoid or a rectified linear function

(Dayan and Abbott, 2001; Gerstner et al., 2014). See Section 1.2.1 for a more

detailed discussion of choosing such a function.

For currents that change with time, a common assumption is that v(t) = f(Is(t))

still approximately holds with a time-dependent current Is(t). This leads to the fol-

lowing equation for how the firing rate v(t) of a single postsynaptic neuron depends

on the firing rates ri of its N presynaptic partners:

τ
dIs(t)

dt
= −Is(t) +

N∑
i=1

wiri(t) , with v(t) = f(Is(t)) , (1.6)

with some initial condition Is(t = 0) = I0.

In Section 1.2, we slightly adapt Eqn. (1.6) to model the firing rates of a popu-

lation of recurrently connected neurons.

1.2 Modelling recurrent neuronal networks

In this thesis, we focus on studying recurrent networks of model neurons (i.e., net-

works in which any neuron can connect to any other neuron). In Section 1.1, we

obtained an equation that describes the firing rate of a single neuron receiving

feedforward inputs (see Eqn. (1.6) and Fig. 1.1b). We now slightly adapt Eqn. (1.6)

8

Neuron j

Neuron iWij

Figure 1.2: An illustration of a re-

currently connected network of neu-

rons. Any neuron can connect to

any other neuron.

so that we can describe the dynamics of a population of N neurons in a recurrent

network. We assume that the connection between any two neurons in a recurrent

network is encoded by a connectivity matrix W where element Wij is the connec-

tion strength from neuron j to neuron i (see Fig. 1.2). Following Eqn. (1.6), the

input xi to neuron i in a recurrent network is governed by the following differential

equation

τ
dxi
dt

= −xi +
N∑
j=1

Wijf(xj) , (1.7)

where the firing rate of neuron i is f(xi) and the initial condition is x(t = 0) = x0,

where x(t) = (x1(t), . . . , xN(t))ᵀ. It will sometimes be more convenient to write

Eqn. (1.7) using vector and matrix notation:

τ
dx

dt
= −x+W f(x) . (1.8)

The dynamical system in Eqn. (1.8) can give rise to rich dynamics that resemble

experimentally measured neuronal activity in many different brain regions (Breaks-

pear, 2017; Hennequin et al., 2014; Mante et al., 2013; Sussillo et al., 2015; Wang

et al., 2018). Clearly, depending on our choices of the synaptic weight matrix W

and the input–output gain function f , which converts neuronal activity into firing

rates, we can obtain a multitude of different dynamics. For the remainder of Sec-

tion 1.2, we provide a brief discussion of some typical choices of f and W and the

effects that they can have on the neuronal dynamics.

9

1.2.1 The input–output gain function f

The input–output gain function f in Eqn. (1.8) is central to this thesis. Therefore, in

this section, we provide a discussion regarding particular aspects of the function f

that will be important for later sections.

1.2.1.1 A linear input–output gain function

If the input–output function f in Eqn. (1.8) is linear (e.g., f(x) = x), we obtain

τ
dx

dt
= −x+Wx , (1.9)

and the system in Eqn. (1.9) can be solved exactly (Strang, 2016; Teschl, 2012).

The solution of Eqn. (1.9) is

x(t) = e
t
τ

(W−I)x0 , (1.10)

where I is the identity matrix, eA denotes the matrix exponential of a matrix A

(see (Teschl, 2012, Section 3.1) for an excellent introduction to the matrix expo-

nential), and x0 is the initial condition. In practice, however, computing this so-

lution can produce substantial numerical errors (Higham, 2005), particularly for

networks containing many neurons. To minimise numerical errors, one must em-

ploy a method such as ‘scaling and squaring’ when using a Taylor series expansion

to compute Eqn. (1.10) (Higham, 2005). Alternatively, one can construct the solu-

tion in Eqn. (1.10) in terms of the eigenvalues and eigenvectors of the matrix W .

However, we must also use a few ‘tricks’ from linear algebra and complex analysis

to ensure that we ultimately obtain a real-valued solution (see Appendix A).

1.2.1.2 Stability of a linear dynamical system

An important concept in this thesis is the stability of neuronal activity on a network.

We use the standard mathematical definition of the stability of a linear dynamical

10

system, in that the linear system in Eqn. (1.9) is called stable if all solutions re-

main bounded as t → ∞ (Teschl, 2012). Furthermore, a linear system is called

asymptotically stable if all solutions converge to 0 as t→∞.

Using mathematical definitions of the stability of linear dynamical systems, the

system in Eqn. (1.9) is asymptotically stable if and only if the real part of all of the

eigenvalues of W − I are less than 0 (Teschl, 2012, Section 3.2), or equivalently

if the real part of all of the eigenvalues of W are less than 1. This is because

the addition of a diagonal matrix only shifts the real part of the spectrum. (See

Appendix B for a proof.) We will denote the condition of the real part of all of the

eigenvalues of W being less than 1 as α(W) < 1, where

α(W) = max{Reλ : λ is an eigenvalue of W } . (1.11)

The quantity α(W) is called the spectral abscissa of the matrix W (Hennequin

et al., 2014; Vanbiervliet et al., 2009). Thus, from the above discussion, for the

linear recurrent neuronal network Eqn. (1.9), the neural activity x(t) converges to

0 over (positive) time if and only if α(W) < 1.

How useful is the linear network model in Eqn. (1.9) in describing cortical dy-

namics? Some biological realism is neglected, because neuronal firing rates can

become negative in this model. (We will revisit this issue in Section 1.2.1.4.) Addi-

tionally, the solution Eqn. (1.10) either decays to 0 or explodes, depending on the

sign of the largest real part of the spectrum of W (except for the special case of

α(W) = 1; see also Section 1.2.3) (Teschl, 2012). In contrast, real cortical circuits

can exhibit complex fluctuations in activity, as well as sustained levels of firing. In

Section 1.2.1.3, we discuss how one can overcome some of these difficulties by

using a nonlinear gain function.

1.2.1.3 A nonlinear input–output gain function

As mentioned in Section 1.2.1, the gain function f , which resembles the single-

neuron input–output (f -I) curve (Thurley et al., 2008), converts neuronal activity

11

x into firing rates. When experimentally accessing the single-neuron input–output

gain function in vitro by injecting current into the soma of a neuron and measur-

ing the resulting firing rate, one commonly finds a sigmoidal-shaped input–output

curve (Chance et al., 2002; Rothman et al., 2009; Thurley et al., 2008). In line

with such observations, one also typically chooses a sigmoidal-shaped function f ,

such as a tanh function, in the model in Eqn. (1.8) (Rajan et al., 2010; Sompolinsky

et al., 1988). In this thesis, we primarily use the following functional form for f :

f(xi) =


r0 tanh(gixi/r0) , if xi < 0 ,

(rmax − r0) tanh(gixi/(rmax − r0)) , if xi ≥ 0 ,

(1.12)

where rmax is the maximum firing rate, and the ‘gain’ value gi is the slope of the

function f for neuron i at baseline rate r0 and thus controls the input–output sensi-

tivity of neuron i. The gain gi of each neuron is conventionally set to 1 in previous

models (Hennequin et al., 2014; Hoerzer et al., 2014; Rajan et al., 2010), and the

baseline and maximum rates r0 and rmax, respectively, are chosen to be biologi-

cally realistic depending upon the cortical area being modelled. See Section 2.2

where we discuss some typical choices of r0 and rmax.

With this setup (i.e., Eqns. (1.8) and (1.12)), f(xi) describes the firing rate of

neuron i relative to the baseline rate r0. In Fig. 1.3, we plot the gain function

f(xi) from Eqn. (1.12) using gain values of (black) 1 and (blue) 2, together with the

linearised version of the gain function (i.e., fl(xi) = gixi) (see the dashed lines).

The function in Eqn. (1.12) ensures that the solution of Eqn. (1.8) is always

bounded. However, guaranteed boundedness of the neuronal dynamics is not the

same as stability of the equilibrium point at x = 0. To study the (local) stability

of the equilibrium point x = 0 in Eqn. (1.8) when one uses the nonlinear func-

tion Eqn. (1.12), we must linearise Eqn. (1.8) around x = 0 (Teschl, 2012). See

Chapter 2 for a detailed discussion.

It has been shown that the system in Eqn. (1.8) together with a tanh gain func-

tion, such as the one in Eqn. (1.12), has a positive maximum Lyapunov exponent if

12

-40 0 40 80 120

Input (a.u.)

-20

0

20

40

60

80

100

R
el

at
iv

e
fir

in
g

ra
te

 (

H
z)

g
i
= 1

g
i
= 2

Linear

Nonlinear) i
x(

f

Figure 1.3: Examples of a tanh gain function

and the corresponding linearised versions.

We show the gain function f from Eqn. (1.12)

(solid curves) with (black) gi = 1 and (blue)

gi = 2. We also show the linearised ver-

sions (i.e., fl(xi) = gixi) using the dashed

lines with the same two gain values.

α(W) > 1 (Sompolinsky et al., 1988). Because of this, if α(W) > 1, the neuronal

dynamics governed by Eqn. (1.8) are commonly called ‘chaotic’, and the dynam-

ics rapidly fluctuate between maximum and minimum firing rates (Hoerzer et al.,

2014; Rajan et al., 2010; Sompolinsky et al., 1988; Sussillo and Abbott, 2009; Vo-

gels et al., 2005).

1.2.1.4 A strictly positive input–output gain function

Eqn. (1.8) together with the gain function Eqn. (1.12) describes how neuronal firing

rates can be modelled relative to a baseline rate r0. Although such a setup can

receive criticism because neuronal firing rates appear to be negative and thus

the model is biologically unrealistic (Dayan and Abbott, 2001), we show that one

can obtain identical neuronal firing-rate activity by using a strictly positive gain

function f and including a constant input h in Eqn. (1.8). Specifically, given a

desired baseline firing rate r0, one models the neuronal activity as

τ
dx

dt
= −x+W f(x) + h , (1.13)

from some initial condition x0, with hi = −r0

∑
jWij and

f(xi) =


r0 tanh(gixi/r0) + r0 , if xi < 0 ,

(rmax − r0) tanh(gixi/(rmax − r0)) + r0 , if xi ≥ 0 ,

(1.14)

where rmax is the maximum firing rate.

13

1.2.2 Network architecture

Thus far, we have not discussed how one chooses the network architecture (i.e.,

the connectivity between the neurons), which is encoded by W . There is a rich

literature discussing the choice of the connectivity matrixW and in particular the bi-

ological plausibility ofW and how it affects the resulting neuronal dynamics (Dayan

and Abbott, 2001; Gerstner et al., 2014; Hennequin et al., 2012, 2014; Rajan and

Abbott, 2006; Rajan et al., 2010; Sompolinsky et al., 1988; Sussillo and Abbott,

2009; Vogels et al., 2005). One typically sets the probability that any two neurons

are connected to be small, in line with experimentally observed sparse cortical con-

nectivity (Braitenberg and Schüz, 1991; Lefort et al., 2009). Connection weights

are typically chosen independently and identically from a probability distribution. A

Gaussian distribution is commonly used with a mean of 0 and a standard deviation

of w0/
√
N where N is the number of neurons in the network and w0 is a constant

(Rajan et al., 2010; Sompolinsky et al., 1988; Sussillo and Abbott, 2009). This

leads to complex eigenvalues of W that, in the limit of large N , are distributed uni-

formly within a circle centred at [0, 0] with a radius equal to w0 (Girko, 1983) (see

Fig. 1.4). Thus, for linear neuronal dynamics governed by Eqn. (1.9), with w0 < 1,

the neuronal dynamics will likely decay to 0 over time because the real parts of the

eigenvalues of W are likely to be less than 1. In practice, there is a chance that

the real parts of some eigenvalues are larger than 1 if w0 is close to 1 because

this result holds only in the limit of large N . For example, see the the rightmost

eigenvalue in Fig. 1.4.

If one chooses connection weights as described above from a Gaussian distri-

bution, Dale’s law — which states that all outgoing synaptic weights from a neuron

are either excitatory (i.e., positive) or inhibitory (i.e., negative) (Strata and Har-

vey, 1999) — is violated. However, this biological implausibility can be resolved

by suggesting that the units in the network do not represent individual neurons.

Rather, the units can be interpreted as representing the activity of a population of

14

-1 -0.5 0 0.5 1
Real part

-1

-0.5

0

0.5

1
Im

ag
in

ar
y

pa
rt

Figure 1.4: Spectrum of a connectiv-

ity matrix W of 1000 neurons with ele-

ments drawn independently and identi-

cally from a Gaussian distribution with a

mean of 0 and a standard deviation of

1/
√
N . We also show the unit circle with

the black curve.

(excitatory and inhibitory) neurons. For example, if we consider the case of one

population of neurons that connect to another population of neurons, depending

on whether there is more net excitation or inhibition from the first population to the

other, the overall effect will be either excitatory or inhibitory. Under this interpreta-

tion, units (i.e., populations of excitatory and inhibitory neurons) in model neuronal

networks can display both positive and negative outgoing connections.

Alternatively, one can comply with Dale’s law by enforcing columns of the weight

matrix W to contain either all nonnegative or all nonpositive elements (Hennequin

et al., 2014; Murphy and Miller, 2009; Rajan and Abbott, 2006). For an excitatory

population E and an inhibitory population I, one commonly constructs the weight

matrix W as

W =

 WEE −WEI

WIE −WII

 , (1.15)

where the elements of WXY are nonnegative and each element represents the

connection strength from a unit in population Y to a unit in population X. The

elements ofWXY are typically set to w0/
√
N with probability p and 0 with probability

1− p for any two neural populations X ∈ {E, I} and Y ∈ {E, I}. Therefore, the left

columns of W are nonnegative, and the right columns are nonpositive. The matrix

W is thus likely mathematically non-normal (i.e., W ᵀW 6= WW ᵀ). In Section

1.2.3, we discuss the effects on the neuronal dynamics of using a weight matrix of

15

the form in Eqn. (1.15).

1.2.3 Non-normal amplification

For a normal weight matrix W (i.e., W ᵀW = WW ᵀ) that is asymptotically stable

with respect to Eqn. (1.9) (i.e., the real part of all of the eigenvalues of W are

less than 1, as discussed in Section 1.2.1.1), the norm of resulting linear neuronal

dynamics governed by Eqn. (1.9) decay exponentially to 0 following any initial con-

dition (Hennequin, 2013; Hennequin et al., 2012; Trefethen and Embree, 2005).

The closer the real parts of the eigenvalues of W are to 1 (but with all real parts

of the eigenvalues remaining below 1), the more time it takes for the resulting neu-

ronal dynamics to decay to 0. However, the norm of the linear dynamics governed

by Eqn. (1.9) will always decay exponentially to 0 for a normal weight matrix — no

matter how close the real part of its eigenvalues are to 1 (but always remaining

strictly below 1).

Conversely, for a non-normal, (biologically-inspired) weight matrix W given by

Eqn. (1.15) that is linearly stable and which contains strong excitatory connections

balanced by strong inhibitory connections, one can obtain linear neuronal dynam-

ics given by Eqn. (1.9) that transiently deviate away from 0 for some neurons follow-

ing an initial condition (see Fig. 1.5 where we plot ‖e(W−I) t
τ ‖2) (Hennequin et al.,

2012; Murphy and Miller, 2009; Trefethen and Embree, 2005). Such a transient de-

viation in neuronal activity is known as non-normal balanced amplification (Murphy

and Miller, 2009), and it emerges because W is non-normal and thus its eigen-

vectors are not mutually orthogonal (Trefethen and Embree, 2005). The activity in

the non-orthogonal eigenvector basis of W decays monotonically, but the activity

of the neurons themselves can transiently amplify (Trefethen and Embree, 2005).

The amplification can only be transient due to the linear stability of the weight ma-

trix. Such transiently amplified neuronal activity has been suggested to be similar

to the experimentally observed fast, transiently amplified neuronal responses ob-

16

0 50 100 150 200 250
Time t (ms)

0

0.5

1

1.5

2

2.5

3

3.5

Figure 1.5: Non-normal amplification. We plot ‖e(W−I) t
τ ‖2, i.e., the norm of the solution of

Eqn. (1.9) with τ = 2 ms and with W chosen according to Eqn. (1.15) with the elements

of WXY set to either 3/
√
N or 0 with probabilities 0.1 and 0.9, respectively, for any two

neuronal populations X ∈ {E, I} and Y ∈ {E, I}.

served in sensory cortices such as V1 (Murphy and Miller, 2009).

1.2.4 Stability-optimised circuits

Neural activity in motor cortex also displays amplified activity transients during

movement execution (Churchland et al., 2012). However, the increase in neural

activity is often so large that a slightly different model network architecture is re-

quired than the one that we used in Fig. 1.5. One needs to somehow balance

strong recurrent connections, which are necessary for amplified neuronal activity,

with real parts in the eigenvalues of the weight matrix which are all below 1, which

is necessary for the dynamics to eventually return to baseline. One approach

to this problem is to enforce strong excitatory connections and then optimise in-

hibitory connections to reduce the spectral abscissa (i.e., the largest real part in

the spectrum) of the weight matrix. Networks generated in this way have been

called ‘stability-optimised circuits’ (Hennequin et al., 2014).

To create a stability-optimised circuit, one starts with a weight matrix W of

N = 2M neurons (of which M are excitatory and M are inhibitory) that is con-

structed similarly to Eqn. (1.15) with the probability p of connection between any

17

two neurons set to p = 0.1. Nonzero elements of W are then set to w0/
√
N

for excitatory connections and −γw0/
√
N for inhibitory connections, where w2

0 =

2ρ2/(p(1− p)(1 + γ2)) and the inhibition/excitation ratio γ is set to γ = 3. This con-

struction results in W having an approximately circular spectrum of radius ρ = 10

(see the blue dots in Fig. 1.6a) (Hennequin et al., 2014).

An optimisation algorithm (see Appendix C for a detailed discussion of this al-

gorithm) is then used to change only the inhibitory connections so that the spectral

abscissa of W is reduced below 1. The algorithm minimises a quantity known as

the ‘smoothed spectral abscissa’ α̃(W), which is an upper bound of the spectral

abscissa α(W), that — among other advantages — leads to tractable optimisation

(see Appendix C for details) (Vanbiervliet et al., 2009). Briefly, inhibitory weights

are iteratively updated to follow the negative gradient of α̃(W) with respect to W

subject to three constraints. First, the inhibitory weights remain inhibitory (i.e.,

negative). Second, a constant ratio (γ = 3) of mean inhibitory to mean excitatory

weights is maintained. This is achieved by multiplicatively rescaling the inhibitory

‘blocks’ WEI and WII by −γW EE/W EI and −γW IE/W II , respectively, where

W =

 WEE WEI

WIE WII

 , (1.16)

and WXY denotes the mean over all elements in the matrix WXY . Third, the den-

sity of inhibitory connections is restricted to be less than or equal to 0.4. This is

enforced so that the density of inhibitory connections remains biologically realis-

tically small. We achieve this by setting the smallest connection strengths to 0.

(One also removes any self-loops; that is, Wii = 0 for each i because one can

trivially shift the spectrum ofW to the left by addition of a diagonal matrix with only

nonpositive elements.) This constrained gradient descent reduces the spectral ab-

scissa from 10 to approximately 0.15 and we find empirically that approximately

2000 iterations are required (Hennequin et al., 2014). For the precise algorithmic

details, see Appendix C.

18

In Fig. 1.6a, we show the spectrum of a 200-neuron network before (blue) and

after (black) stability optimisation. Using the weight matrix W prior to stability opti-

misation, the neuronal dynamics governed by Eqn. (1.8) and Eqn. (1.12) fluctuate

rapidly between maximum and minimum firing rates (see Fig. 1.6b). Following sta-

bility optimisation, the dynamics transiently oscillate before decaying to baseline

(see Fig. 1.6c). For both simulations, we chose the initial condition x0 uniformly at

random from the interval [−1, 1] and then rescale x0 so that ‖x0‖2 = 1.

Rather than simply choosing the initial condition uniformly at random, one can

also find initial conditions that produce large deviations in neuronal activity away

from baseline. To find these so-called ‘preferred initial conditions’ (Hennequin et al.,

2014), we study the linear system Eqn. (1.9). For some unit-norm initial condition

a, we define the ‘evoked energy’ ε(a) as

ε(a) =
2

τ

∫ ∞
0

‖x(t)‖2
2dt . (1.17)

The factor 2/τ acts to normalise the evoked energy so that ε = 1 for an uncon-

nected network (i.e., Wij = 0 for all i, j) given any (unit-norm) initial condition a

(Hennequin et al., 2014).

We then define an ‘optimal’ initial condition a1 as an initial condition that max-

imises ε(a1) from Eqn. (1.17). (Note that for a weight matrix W with α(W) < 1,

the envelope of the linear dynamics (1.9) decays exponentially over time, thus ε is

also finite.) For the linear dynamics (1.9), we can analytically derive a collection

a1,a2, . . . ,aN of N orthogonal initial conditions that each maximise the evoked en-

ergy ε in the subspace orthogonal to all previous optimal initial conditions. (See

Appendix C.2 for further details.)

In Fig. 1.6d, we plot the neuronal dynamics in response to the initial condition

a1. We see that on average, the neuronal dynamics have larger deviations away

from 0 than for an initial condition that is chosen uniformly at random (compare

panels (d) and (c)).

19

-30 -20 -10 0 10
Real part

Initial weight matrix
SOC

-15

-10

-5

0

5

10

15

Im
ag

in
ar

y
pa

rt

0 200 400 600 800 1000
Time (ms)

-20

0

20

40

60

80

R
el

at
iv

e
fir

in
g

ra
te

 (
H

z)

0 200 400 600 800 1000
Time (ms)

-0.05

0

0.05

R
el

at
iv

e
fir

in
g

ra
te

 (
H

z)

0 200 400 600 800 1000
Time (ms)

-1

-0.5

0

0.5

R
el

at
iv

e
fir

in
g

ra
te

 (
H

z)

a b

c d

Figure 1.6: Stability-optimised circuits. a, We show the spectrum of a 200-neuron weight

matrix before stability optimisation (initial weight matrix; blue dots) and the spectrum of the

same weight matrix following stability optimisation (SOC; black dots). See the main text

and Appendix C for details of the network construction. b, We plot the neuronal firing rates

for 20 excitatory neurons for the initial (unstable) network prior to stability optimisation. The

neuronal activities are governed by Eqn. (1.8) with the nonlinear gain function Eqn. (1.12)

with r0 = 20 Hz, rmax = 100 Hz, and τ = 200 ms. The initial condition x0 is chosen from

a uniform distribution over the interval [−1, 1] and is then rescaled so that ‖x0‖2 = 1. c,

Same as panel (b), but we use the weight matrix obtained after stability optimisation to

generate the neuronal firing rates. d, Same as panel (c), but we use the initial condition

a1 that produces the largest evoked energy ε (see Eqn. (1.17)) under the constraint that

‖a1‖2 = 1 (see the main text). Also note the difference in the vertical axis scale between

panels (c) and (d).

It has been demonstrated that the neuronal dynamics of stability-optimised cir-

cuits are qualitatively similar to neuronal activity observed in primary motor cortex

20

during movement execution (see Fig. 1.7) (Churchland et al., 2012; Hennequin

et al., 2014).

1.3 Cortical motor circuits

Over the last decade, significant progress has been made on understanding the

dynamics of cortical motor circuits and how they control and generate movements.

In this section, we briefly summarise some of these key findings.

In a common experimental motor task, a monkey is trained to reach from the

centre of a screen to a target location. Electrophysiological recordings of motor cor-

tex are then taken together with electromyogram (EMG) measurements of muscle

dynamics during both movement preparation and execution. When preparing to ex-

ecute a particular movement, movement-specific preparatory activity is observed

in premotor and motor cortices (Churchland et al., 2012). One commonly observes

neuronal activity approaching a particular state at movement onset that is specific

to each movement (Churchland et al., 2012; Shenoy et al., 2013). After movement

onset, neurons display quickly-changing multiphasic firing-rate transients that re-

turn towards baseline following movement completion (see Fig. 1.7a). Each neuron

normally displays unique patterns of activity that are different for different move-

ments, and it has been difficult to understand how the complex patterns of activity

observed at the single-neuron level relates to the intended movement (Churchland

et al., 2012; Shenoy et al., 2013).

Based on these results and others (e.g., Afshar et al. (2011); Churchland and

Cunningham (2014); Churchland et al. (2010); Shenoy et al. (2013)), it has been

suggested that it is useful to view motor cortex as an autonomous dynamical sys-

tem, where movement-specific preparatory activity sets the initial condition for the

system, whose subsequent evolution drives desired downstream muscle activity.

From this perspective, the complex single-neuron firing-rate dynamics provide a

flexible basis set for the generation of movements (Churchland and Cunningham,

21

Motor cortex
recordings

Go cue 200 msTarget

a b

Go cue 200 msTarget

SOC neuronal
activity

Figure 1.7: Experimental recordings and simulations of single-neuron firing rates in motor

cortex. This figure was adapted with permission from Hennequin et al. (2014). a, Example

firing rates of one neuron in macaque motor cortex for 27 different reach conditions during

a delayed reaching task. b, Firing-rate activity for one neuron in the stability-optimised

circuit model for 27 different initial conditions where each initial condition is chosen as a

different weighted combination of a1 and a2 (see Section 1.2.4) with combination weights

chosen from the uniform distribution over the domain [−1,−0.5] ∪ [0.5, 1]. Each trace is

coloured according to the amount of preparatory activity at the time of the go cue.

2014). Furthermore, neural activity in primary motor cortex can be accurately cap-

tured by a simple linear dynamical-systems model of a similar form to Eqn. (1.9)

(Lara et al., 2018). This suggests that the transient amplification that we observe

in primary motor cortex during movement execution (see Fig. 1.7) (Churchland

and Cunningham, 2014) is likely a result of non-normal dynamics (although, for

example, it is possible that external inputs still affect motor cortex dynamics during

movement execution).

In line with this perspective, several recurrent neuronal-network models have

been developed to capture neural activity observed during movement execution.

One of these models is the stability-optimised circuit (Hennequin et al., 2014),

which we discussed in Section 1.2.4. This model exploits inhibition to stabilise

neuronal activity and places an emphasis on biologically plausible connectivity.

Another model is a ‘chaotic’ recurrent network (see Section 1.2.1.3) in which the

recurrent connections are optimised using supervised training so that a weighted

combination of the neuronal activity produces naturalistic muscle activity (Sussillo

et al., 2015). Following training, either model can qualitatively reproduce neuronal

22

activity observed in motor cortex during movement execution. (See Fig. 1.7b for

example neuronal dynamics resulting from a stability-optimised circuit.) However,

these models cannot explain how new movements are be learned or how their

static architecture allows variations in both output trajectories and their speed.

1.4 Why study gain modulation in cortical motor circuits?

There are several possibilities as to how cortical activity can be modified to pro-

duce desired motor outputs. One possibility is that the initial condition of neural

activity (i.e., x0 in Eqn. (1.8)) is changed depending on the intended movement

(Churchland et al., 2012; Shenoy et al., 2013). However, changing the initial con-

dition cannot reliably extend the duration of neural activity transients. Alternatively,

when learning new movements, changes often occur in the connections between

neurons in several cortical motor areas (Komiyama et al., 2010; Peters et al., 2014;

Sanes and Donoghue, 2000; Xu et al., 2009). However, it has been suggested that

there is very little circuit reorganisation in motor cortices during the time course of a

single experimental session (i.e., on the order of about an hour) (Perich et al., 2017;

Sadtler et al., 2014). To quickly switch between movements, rather than employ-

ing synaptic plasticity, it is likely that a change occurs in the input to cortical motor

circuits, which may affect the neurons’ response properties. Indeed, there is exper-

imental evidence demonstrating that changes occur in the input–output sensitivity

(i.e., gain modulation) of neurons in motor cortex (Kida and Mitsushima, 2018) and

downstream spinal motoneurons (Vestergaard and Berg, 2015; Wei et al., 2014)

during skill acquisition and control of muscle activity. Such gain changes are similar

to modifying the gain value gi in Eqn. (1.12).

Gain modulation is a possible mechanism to generate new patterns of neural

activity while circuit connectivity remains fixed (Salinas and Sejnowski, 2001; Sali-

nas and Thier, 2000; Swinehart et al., 2004; Zhang and Abbott, 2000). Additionally,

gain modulation may play a role in controlling the duration of neural activity tran-

23

sients (Wang et al., 2018). However, there have been only a few theoretical studies

investigating the effects of gain modulation in model neuronal networks. One such

study has demonstrated that relatively subtle changes in the input–output gain

of recurrently connected neurons can cause substantial changes in network out-

put activity (e.g., a linear weighted sum of neuronal firing rates, see Section 2.6)

(Zhang and Abbott, 2000). Furthermore, modulating the gain of neurons in the

input layer of a feedforward neuronal network can allow neuronal activity in the

output layer to approximate a variety of target outputs, such as sin and cos func-

tions (Swinehart et al., 2004). However, it remains unclear what the effects of gain

modulation are in recurrent neuronal networks that exhibit rich temporal neuronal

dynamics (i.e., reminiscent of those observed in motor cortex during movement

execution).

Realistically, gain modulation may occur from a variety of mechanisms. It has

been shown in vitro that background excitatory and inhibitory inputs can act as a

gain-control mechanism, in which increasing the synaptic input in a balanced man-

ner reduces the gain of cortical neurons (Chance et al., 2002). Additionally, neuro-

modulators such as serotonin and dopamine have been demonstrated to affect the

gain of neurons in a variety of areas including cortex (Thurley et al., 2008), basal

ganglia (Hernandez-Lopez et al., 2000), and the spinal cord (Wei et al., 2014).

In this thesis, we study the effects of gain modulation in recurrent neuronal

networks with rich temporal dynamics (such as those we discussed in Section

1.2.4). In Chapter 2, we investigate the effects of changing the gain of all neurons

identically in recurrent neuronal networks.

24

CHAPTER 2

Global gain modulation in recurrent neuronal networks

In this chapter, we demonstrate some of the key effects of identically modulating

the gain of all neurons — which we call global gain modulation — in recurrent

neuronal-network models. We build on material from Chapter 1 regarding the sta-

bility of neuronal dynamics by studying how global gain modulation affects stability.

We examine the effects of gain changes on the spectrum of the effective network

connectivity matrix and how this relates to the frequency and amplitude of the

neuronal dynamics. We then investigate how global gain modulation relates to

variability in network outputs (which we suggest may relate to variability in muscle

activity).

2.1 Introduction

Cortical networks receive a multitude of inputs from many other brain regions.

Many such inputs to cortical circuits can affect the intrinsic gain — that is, the input–

output sensitivity — of neurons. For example, increasing the amount of balanced

synaptic input to a cortical neuron can decrease its input–output gain (Chance

25

et al., 2002) and excitatory synaptic inputs exhibiting short-term depression can

affect neuronal gain sensitivity (Rothman et al., 2009). Additionally, neuromodula-

tors, such as dopamine and serotonin, can affect the input–output gain of neurons

in many areas including cortex (Thurley et al., 2008), basal ganglia (Hernandez-

Lopez et al., 2000), and the spinal cord (Wei et al., 2014).

Various roles have been suggested for why neuronal gain modulation may be

useful. In the following, we describe some studies regarding the potential roles of

global gain modulation (i.e., identically modulating the gain of all neurons). Using

fluctuations in pupil diameter as a proxy for gain changes in the central nervous

system, it has been suggested that when under time pressure during decision

making, there is an increase in the gain of the central nervous system in humans

(Murphy et al., 2016). From these results, it was hypothesised that increases in

gain push neuronal activity closer to a decision threshold, so that a decision can

be made within a given time constraint (Murphy et al., 2016).

Gain modulation has also been proposed as a mechanism for flexible control

of functional brain connectivity (Salinas and Bentley, 2009). For example, it has

been demonstrated that brain-wide gain modulation can reinforce dominant neu-

ral pathways in humans (Eldar et al., 2013). The authors observed that temporal

correlations between fMRI time series tracked slow fluctuations in the human par-

ticipants’ pupil size (Eldar et al., 2013). Additionally, the larger the participants’

neural gain (which was inferred by their pupil size), the more the participants’ task

performance aligned with their predisposed learning style.

In other research, the gain of motoneurons in the spinal cord was linked experi-

mentally to optimisation of muscular control (Vestergaard and Berg, 2015). In their

experiments, the authors observed that the gain of neurons in the spinal cord of tur-

tles is modulated on sub-second time scales in accordance with the required force

production of a limb — the larger the required force, the larger the gain of the pool

of motoneurons. This led the authors to suggest that the gain of spinal motoneu-

26

rons is modulated to minimise variability in muscle-force production (Vestergaard

and Berg, 2015). Additionally, the gain of motoneurons in the spinal cord of hu-

mans can be modulated systematically by serotonin; this also results in increased

variability in muscle activity during precision tasks (Wei et al., 2014).

As we mentioned in Chapter 1, there have been few theoretical studies into gain

modulation in model neuronal networks (Salinas and Sejnowski, 2001). Previous

research suggests that relatively small levels of gain modulation in recurrent neu-

ronal networks allows substantial switching in the activity of output neurons (Zhang

and Abbott, 2000). Additionally, independently modulating the gain of neurons in

the input layer of a feedforward network can allow units in the output layer to gen-

erate a variety of target functions (Swinehart et al., 2004). However, the effects of

gain modulation in recurrent neuronal networks with rich temporal dynamics (i.e.,

similar to those observed in many cortical areas; see Section 1.3) remain unclear.

In this chapter, we study how global gain modulation in recurrent neuronal-

network models affects the neuronal dynamics. Using methods from dynamical

systems and network theory, we identify conditions that guarantee asymptotic sta-

bility of the neuronal dynamics on a network with respect to the largest real part

in the spectrum of the connectivity matrix W (i.e., the spectral abscissa of W ;

see Section 1.2.1.2) and the input–output gain function. We show that the level of

neuronal gain before instability arises, which we call the critical gain, is inversely

proportional to α(W), where α(W) is the spectral abscissa of W (see Section

1.2.1.2). We prove this for both a linear and a nonlinear gain function and provide

supporting numerical simulations.

We then investigate the effects of global gain modulation on the resulting neu-

ronal dynamics whilst they remain in the regime of being asymptotically stable. To

test our results in networks that exhibit dynamics reminiscent of cortical activity,

we follow Hennequin et al. (2014) and create ‘stability-optimised circuits’. These

networks consist of a set of sparse, strong excitatory recurrent connections that

27

are stabilised by fine-tuned inhibition (see Section 1.2.4). We demonstrate that

changes in neuronal gain produce predictable changes in the frequency and am-

plitude of the transient neuronal activity. We then show that the global gain in

a recurrent neuronal network correlates positively with variability in the network

output activity, and we suggest that global gain in cortical motor circuits may cor-

relate positively with variability in muscle activity. Our results build on the prior

links already drawn from experimental work regarding neuronal gain modulation

and muscle control (Coxon et al., 2005; Salinas and Thier, 2000; Vestergaard and

Berg, 2015; Wei et al., 2014).

2.2 Methods

We study recurrent neuronal networks whose state x(t) = (x1(t), . . . , xN(t))ᵀ evolves

according to the dynamical system

τ
dx(t)

dt
= −x(t) +W f(x(t); g) + h(t) , (2.1)

from some initial condition x(0) = x0. In Eqn. (2.1), f(x; g) denotes the element-

wise application of the static scalar gain function f to the neuronal activity vector x.

In keeping with Hennequin et al. (2014), we set the single-neuron time constant to

be τ = 200 ms, and h(t) denotes an external input. The gain function f , which gov-

erns the transformation of neuronal activity x into firing rates relative to a baseline

rate r0, is

f(xi; g) =


r0 tanh(gxi/r0) , if xi < 0 ,

(rmax − r0) tanh(gxi/(rmax − r0)) , if xi ≥ 0 ,

(2.2)

where the global scalar gain value g is the slope of the function f at x = 0 and

thus g controls the input–output sensitivity of all neurons (Rajan et al., 2010). We

use a baseline rate of r0 = 20 Hz and a maximum firing rate of rmax = 100 Hz.

We choose these values so that when we use stability-optimised circuits (see Sec-

28

-40 0 40 80 120

Input (a.u.)

-20

0

20

40

60

80

100

R
el

at
iv

e
fir

in
g

ra
te

 (

H
z)

g

= 1

g

= 2

Linear

Nonlinear) i
x(

f

. . .

Initial

cond.

Gain
mod.

Recurrent neuronal network

ExcitatoryInhibitory

a b

Figure 2.1: a, We show the nonlinear gain function f from Eqn. (2.2) (solid curves) with

(black) g = 1 and (blue) g = 2. We also show the linearised versions (i.e., fl(xi; g) = gxi)

using the dashed lines with the same two gain values. b, Illustration of a recurrent neuronal

network in which we can control the gain (which we indicate by the dial) of all neurons in

the recurrent network. Red arrows denote excitatory connections and blue circles denote

inhibitory connections.

tion 2.5), these values produce neuronal activities that are consistent with observa-

tions (Churchland et al., 2012; Kao et al., 2015; Lara et al., 2018). (We also revisit

how such choices affect the neuronal activities later in Section 3.7.)

As we mentioned in Section 1.2.1, f(x; g) describes the neuronal firing rates

relative to the baseline r0. We also use a linearised version of the gain function,

which we denote by fl(xi; g) = gxi. See Fig. 2.1, where we plot both f and fl for

two different values of the gain g.

Following Hennequin et al. (2014), we create weight matrices W with N = 2M

neurons (of which M are excitatory and M are inhibitory), where the probability

of connection between any two neurons is p. Nonzero elements of W are set

to w0/
√
N for excitatory connections and to −γw0/

√
N for inhibitory connections,

where w2
0 = 2ρ2/(p(1 − p)(1 + γ2)). This construction results in W having an

approximately circular spectrum of radius ρ (Hennequin et al., 2014). We set the

inhibition/excitation ratio to γ = 1 unless we state otherwise (e.g., see Section

2.5). In Sections 2.3 and 2.4, we use various different values for N , p, and ρ. In

29

Section 2.5, we also use stability-optimised circuits to generate neuronal dynamics

similar to those observed in cortex (Hennequin et al., 2014). See Fig. 2.1b for an

illustration of our model.

2.3 Stability of neuronal activity

A major effect that gain modulation can have in recurrent neuronal networks is

to change the (local) asymptotic stability of neuronal activity (Sompolinsky et al.,

1988). Briefly, we are interested in whether a small perturbation of the neuronal

activity around x = 0 grows or decays over time. If the perturbation decays, the

baseline firing rate is asymptotically stable. However, if the perturbation grows

indefinitely, we say the neuronal dynamics are unstable (see Section 1.2.1.2).

In this section, we build on Section 1.2.1.2, where we discussed asymptotic sta-

bility of linear systems, and study the asymptotic stability of the neuronal dynamics

governed by Eqn. (2.1) with respect to the gain g and the weight matrix W . We

utilise methods from dynamical systems to treat both linear (fl) and nonlinear (f)

gain functions, and we obtain bounds on the decay of the solution of Eqn. (2.1).

Our approach relies on notions of stability for systems of nonlinear autonomous

differential equations. There are several excellent textbooks and other materials

regarding this topic (Pereira, 2011; Teschl, 2012; Wiggins, 2003). See Appendix

2.A for any mathematical definitions that we use in this section.

2.3.1 Analytical results

Our key analytical result is the following. Suppose that we are given a differentiable

(possibly nonlinear) gain function f(x) in Eqn. (2.1) with a slope g 6= 0 at x = 0

and any weight matrix W . If

g < 1/α(W) , (2.3)

30

we show that in the absence of external input (i.e., h = 0), then x = 0 is locally

asymptotically stable under the dynamics governed by Eqn. (2.1). Additionally, if

Eqn. (2.3) is satisfied, then for a sufficiently small external input h(t) in Eqn. (2.1),

for long times we have

‖x(t)‖ ≤ K‖h(t)‖ , (2.4)

for some positive real number K. Therefore, sufficiently small, (possibly time-

dependent) external inputs do not affect the stability of the neuronal dynamics.

See Appendix 2.B for the mathematical details and proofs of Eqns. (2.3) and (2.4).

For the case of the linear gain function fl(x; g) = gx, we show that if g < 1/α(W),

the dynamics of Eqn. (2.1) are globally asymptotically stable (see Appendix 2.B

for a proof). Therefore, given any initial condition, with no external input, the dy-

namics decay exponentially to 0. We also note that for the linear gain function

fl(x; g) = gx, the gain factor g can be interpreted as simply scaling the weight

matrix W in Eqn. (2.1) and the stability condition can be re-written as α(gW) < 1.

These results imply that given a weight matrix W , the dynamics on W can be

brought into the asymptotically stable regime by globally modifying the gain of all

neurons (e.g., through neuromodulators (Hernandez-Lopez et al., 2000; Thurley

et al., 2008; Wei et al., 2014)). Alternatively, the neuronal dynamics on W can be

brought into the asymptotically stable regime by reducing the spectral abscissa of

W by changing the synaptic connections. For example, Hebbian synaptic plasticity

rules can reduce the spectral abscissa ofW ; see (Hennequin, 2013, Chapter 4) for

a discussion. Such plasticity rules are similar to rules that can be used to maintain

detailed E/I balance in feedforward spiking networks (Vogels et al., 2011).

In Fig. 2.2a, we show the spectrum of a weight matrix W that we generated as

detailed in Section 2.2 with N = 200, p = 0.1, and ρ = 1. We show the critical gain

(which we define as g = 1/α(W)), given the spectral abscissa of W . In general,

increasing the gain results in dynamics that decay more slowly. However, if the

gain is increased above 1/α(W), the dynamics become unstable.

31

A stability condition related to Eqn. (2.3) was obtained previously (Sompolinsky

et al., 1988). However, the authors used a mean-field approach that relied on the

assumption that N → ∞, and they did not consider the case of an external input

h in Eqn. (2.1). Here, we independently treat the gain value g and the spectral

abscissa α(W), and for our stability conditions Eqn. (2.3) and Eqn. (2.4), we do

not make any assumptions regarding how W is constructed (such as the synaptic

weights having a mean of 0). Our approach also focusses on applying bounds on

the neuronal activity x over time rather than focussing on the case of long times.

2.3.2 Numerical results

To test our analytical predictions, we construct 200 weight matrices where the num-

ber N of neurons, the connection probability p, and the approximate spectral ab-

scissa ρ (see Section 2.2) are drawn from the uniform distribution on the inter-

vals [50, 1000], [0, 0.5], and [0, 20], respectively. We simulate dynamics according

to Eqn. (2.2) with h = 0, and we use both fl and f and the initial condition x0 is

drawn randomly from the uniform distribution on the interval [−0.025, 0.025] (i.e., x0

is close to 0).

For each of the 200 weight matrices, we initially set g = 0.9/α(W) and increase

g in increments of 10−4 until ‖x(T)‖2 > ‖x0‖2 with T = 10 s. To numerically es-

timate the critical gain at which instability arises, we define the first value of g

such that ‖x(T)‖2 > ‖x0‖2 as the critical gain. We plot these results in Fig. 2.2b.

Regardless of whether we use the nonlinear f (main) or linear fl (inset) gain func-

tions, all simulation results lie very close to the theoretical prediction. (We use

the same weight matrices for both f and fl.) The region of asymptotically stable

(respectively, unstable) neuronal activity corresponds to being under (respectively,

above) the red curve. These results support our analytical predictions by showing

that changes in the spectral abscissa of the weight matrix or changes in the global

neuronal gain can lead to changes in the local stability of the neuronal dynam-

32

Im

Re

UnstableStable

Increasing g Decreasing g

)W(/α= 1g

)W(α

0 5 10 15 20
0

0.5

1

1.5

2

Spectral abscissa

C
rit

ic
al

 g
ai

n
g

Theory

Simulation results

C
rit

ic
al

 g
ai

n
g

0 5 10 15 20
0

0.5

1

1.5

2

Spectral abscissa

a

b

c

0 2 4 6 8 10
Time (s)

-20

-10

0

10

20

30

40

R
el

at
iv

e
fir

in
g

ra
te

 (
H

z)

Figure 2.2: a, We plot the spectrum of a

weight matrix W , which is generated as de-

tailed in Section 2.2 with N = 200, the con-

nection probability p = 0.1, and approximate

spectral abscissa ρ = 1. The red dashed

line is the spectral abscissa α(W). If g <

1/α(W), then the dynamics on the network

are asymptotically stable. Increasing g above

1/α(W) results in unstable neuronal dynam-

ics. b, Simulation results for the critical gain

g before instability arises using 200 differ-

ent weight matrices where N , p, and ρ are

drawn from the uniform distribution on the in-

tervals [50, 1000], [0, 0.5], and [0, 20], respec-

tively. We show results when using either

the nonlinear f (main) or fl (inset) gain func-

tions along with the theoretically predicted in-

verse relationship between the critical gain g

and α(W) (i.e., g = 1/α(W)) in red (see

the main text). For visualisation purposes,

we show only 55 data points. c, For each of

the 200 weight matrices, we generate initial

conditions x0 from the uniform distribution on

the interval [−1000, 1000] and plot the mean

neuronal firing rate using the nonlinear gain

function f with g = 0.95/α(W). Although the

neuronal firing rates are initially not close to

0, the mean firing rates decay to 0 for each

weight matrix.

33

ics around 0. It also shows that changes in stability are accurately described by

Eqn. (2.3).

For the numerical simulations that we show in Fig. 2.2b, we use an initial con-

dition x0 for the neuronal activity that is close to 0. For the nonlinear gain function,

however, the equilibrium point at 0 is not guaranteed to be globally attractive (which

is guaranteed to be the case with the linear gain function; see Appendix 2.B).

Therefore, to examine whether the equilibrium point at 0 has a large basin of attrac-

tion when using the nonlinear gain function f , we use the same 200 weight matrices

that we described above but now we draw the initial condition x0 randomly from the

uniform distribution on the interval [−1000, 1000], and we set g = 0.95/α(W) (i.e.,

close to the critical gain level). (Note that if the spectral abscissa of a weight matrix

is large, then g = 0.95/α(W) is small, so after the initial condition x0 is passed

through the gain function f , the resulting firing rate will have a support that con-

sists of a smaller domain than [−1000, 1000].) For each weight matrix, we plot the

mean firing-rate activity over time in Fig. 2.2c. We see that the mean activity ulti-

mately decays to 0 for all weight matrices. Therefore, for the simulations that we

performed, we find that there is a relatively large basin of attraction to 0 when us-

ing the nonlinear gain function f (e.g., from Fig. 2.2c, we observe that the initial

neuronal firing rates cover approximately half of the total range of possible firing

rates (i.e., approximately the interval [−15, 40])).

2.4 Relationship between eigenvalues and changes in neuronal

gain and time constant τ

In Section 2.3, we identified the range of allowable gain modulation while the neu-

ronal dynamics remain asymptotically stable (see Eqn. (2.3)). We now investigate

the effects of gain modulation whilst the neuronal dynamics remain asymptotically

stable. In this section, we consider the case of a linear gain function fl(x) = gx for

34

-2

-1

0

1

2

Im
ag

in
ar

y
pa

rt

10-3

-2

-1

0

1

2 10-3

-12 -10 -8 -6 -4 -2
Real part 10-3

-12 -10 -8 -6 -4 -2
Real part 10-3

-12 -10 -8 -6 -4 -2
Real part 10-3

-2

-1

0

1

2 10-3

= 200τ= 1;g
= 100τ= 1;g

= 200τ= 1;g
= 200τ= 2;g

= 200τ= 1;g
= 400τ= 2;g

a b c

Figure 2.3: Changes in the spectrum of the matrix (gW − I)/τ when changing the gain g

and/or the time constant τ . a, Changes in the spectrum when changing τ . b, Changes in

the spectrum when changing the gain g. c, Changes in the spectrum when changing both

τ and g. We indicate example changes for a complex conjugate pair of eigenvalues using

the grey arrows.

analytical tractability; we note that f(x) = fl(x) +O(x2), so f and fl are the same

to a first order approximation. For the linear gain function fl and with h = 0, we

noted in Section 1.2.1.1 that the solution to Eqn. (2.1) is given by

x(t) = e(gW−I)t/τx0 . (2.5)

By studying changes in the spectrum of the matrix (gW −I)/τ , we can understand

how the resulting neuronal dynamics are affected. For example, if α(gW − I) < 0,

then α((gW −I)/τ) describes the decay envelope of the neuronal activity (see Ap-

pendix 2.A). Additionally, there is a relationship between the imaginary eigenvalues

and the frequency of oscillation of the neuronal activity (Teschl, 2012): the larger

the imaginary eigenvalues of the matrix (gW − I)/τ , the higher the frequency of

oscillation of the resulting dynamics. This is the case for a linear gain function,

however, in Section 2.5, we investigate whether these effects hold true when using

a nonlinear gain function.

In Fig. 2.3, we compare and contrast the effects of changing the neuronal gain

g and changing the single-neuron time constant τ on the spectrum of the matrix

(gW − I)/τ . We generate a 50-neuron weight matrix as described in Section 2.2

35

with a connection probability of p = 0.1 and an approximate spectral abscissa of

ρ = 0.2. Thus, if g < 5, then α((gW − I)/τ) < 0. We note that simply changing τ

does not affect the asymptotic stability of the neuronal dynamics.

Halving the time constant τ causes α((gW − I)/τ) to be more negative (im-

plying a faster rate of decay of the dynamics to zero) and increases the imaginary

part of the spectrum (implying that the dynamics oscillate with a higher frequency)

(see Fig. 2.3a). We expect this result because τ simply scales time in Eqn. (2.1).

In contrast, doubling the gain causes the same change in the imaginary part of the

spectrum, but the real part of the spectrum is expanded about the centre of the

spectrum and α((gW − I)/τ) is increased towards 0 (see Fig. 2.3b).

Finally, we can change both the gain and the time constant such that α((gW −
I)/τ) increases and the imaginary part of the spectrum remains unchanged (see

Fig. 2.3c). This implies that the resulting linear neuronal dynamics given by Eqn. (2.5)

will decay more slowly but oscillate with the same frequency.

2.5 Effects of global gain modulation on transient neuronal

activity

We now investigate whether the claims that we made in Section 2.4 regarding the

expected changes in neuronal firing rates following gain modulation are valid in

recurrent neuronal networks that display realistic firing-rate activity. To study this,

we use stability-optimised circuits (SOCs) (see Section 1.2.4) (Hennequin et al.,

2014). SOCs display complex multiphasic neuronal activity transients that resem-

ble firing-rate activity in motor cortex during movement execution. To generate a

SOC, one starts with a weight matrix as described in Section 2.2 with an approxi-

mate spectral abscissa ρ = 10. The resulting neuronal activities using this weight

matrix are unstable because the spectral abscissa is larger than 1 (see Section

1.2.4). One then stabilises such an initially unstable weight matrix by changing

36

the inhibitory connections to reduce its spectral abscissa. This is achieved using

an optimisation algorithm. (See Section 1.2.4 and Appendix C for a complete de-

scription.) This results in a weight matrix W that, when endowed with neuronal

dynamics governed by Eqn. (2.1), displays complex multiphasic neuronal activity

(due to the strong excitatory connections), which ultimately decays to a baseline

firing rate following any initial condition.

To generate neuronal firing rates that have larger amplitude oscillations than

would be expected from an initial condition chosen uniformly at random (which we

have used so far in this chapter), we can analytically (for the case of a linear gain

function and with α(W) < 1) determine the initial condition x0 that maximises the

‘evoked energy’ ε(x0) (see Eqn. (1.17) in Section 1.2.4 and Appendix C.2) (Hen-

nequin et al., 2014). Choosing such an initial condition generates neuronal activity

with large amplitude deviations away from baseline. We also find empirically that

we obtain neuronal activity with similar, large amplitude deviations away from base-

line when using a nonlinear gain function (Hennequin et al., 2014).

Using the above-mentioned procedure, we create a SOC consisting of 200 neu-

rons with α(W) = 0.15 after stabilisation. We plot the firing rate of one neuron

in Fig. 2.4 using the nonlinear gain function f in Eqn. (2.2) and using the initial

condition x0 that maximises the evoked energy ε(x0). We use the same values

of the global gain value g and time constant τ that we used in Fig. 2.3 to gen-

erate Fig. 2.4. We see that halving τ causes a doubling of the frequency of the

neuronal firing rate (see Fig. 2.4a), which one would naturally expect because the

time constant τ scales time in Eqn. (2.1). Doubling the gain g causes an increase

in the amplitude of the neuronal firing rate (see Fig. 2.4b); this occurs because

α((gW − I)/τ) increases towards 0, which implies that the linear neuronal dynam-

ics decay more slowly. When doubling the gain g, the frequency of the firing rate

also approximately doubles. We predicted these effects by studying changes in the

spectrum of the associated linear system in Section 2.4, however, we find empiri-

37

0 100 200 300 400 500
Time (ms)

-15

-10

-5

0

5

10

R
el

at
iv

e
fir

in
g

ra
te

 (
H

z)

0 100 200 300 400 500
Time (ms)

-15

-10

-5

0

5

10

0 100 200 300 400 500
Time (ms)

-15

-10

-5

0

5

10

a cb
= 200τ= 1;g
= 100τ= 1;g

= 200τ= 1;g
= 200τ= 2;g

= 200τ= 1;g
= 400τ= 2;g

Figure 2.4: Effects of changing the global gain g and the single-neuron time constant τ on

neuronal firing rates in stability-optimised circuits when using the nonlinear gain function

f in Eqn. (2.2). a, We plot the firing rate of one neuron in a 200-neuron network for two

different values of the time constant τ . Only the frequency of the neuronal dynamics is

affected (see main text). b, For the same neuron, we plot its firing rate when changing the

global gain g for all neurons. We see that, like panel (a), the frequency of its firing rate is

approximately doubled, but the amplitude also increases. c, For the same neuron, we plot

its firing rate when changing both the gain g and τ so that the frequency of the neuronal

dynamics remains approximately the same but the amplitude of the activity increases.

cally that the nonlinear system with the gain function in Eqn. (2.2) displays these

effects. Finally, changing both τ and g in concert so that τ
g

= 200, can result in neu-

ronal activity with a similar frequency but different amplitudes (see Fig. 2.4c). We

only plot the activity of one neuron, but we observe similar effects for all neurons

in the network.

2.6 Global gain modulation correlates with network output

variability

In this section, we study whether global gain modulation in stability-optimised cir-

cuits relates to variability in network outputs (which can act as a proxy for muscle

activity). This is motivated both by our results from Section 2.5 and, as we men-

tioned in the introduction to this chapter in Section 2.1, a recent experimental study

38

that found that gain sensitivity can be modulated on sub-second time scales in

spinal motoneurons to reduce variability in muscle-force production (Vestergaard

and Berg, 2015).

To investigate such phenomena, we study the output of a neuronal network

(e.g., a weighted linear combination of neuronal firing rates; see Fig. 2.5a). For the

case of neuronal network models that exhibit neuronal activity reminiscent of motor

cortex (such as SOCs), the output of such a network could represent muscle-force

activity (Churchland et al., 2012; Russo et al., 2018; Sussillo et al., 2015), which is

typically measured using electromyography (EMG) (Churchland et al., 2012). Ad-

ditionally, motor cortex is one of the final cortical outputs to downstream spinal mo-

toneurons (Rathelot and Strick, 2009), so it is plausible to assume that a weighted

combination of cortical activity may resemble muscle force activity (Churchland

et al., 2012; Russo et al., 2018; Sussillo et al., 2015).

Here, we treat the network output as a weighted linear combination of excitatory

neuronal firing rates. Such an approach has been widely used (Hennequin et al.,

2014; Hoerzer et al., 2014; Russo et al., 2018; Sussillo and Abbott, 2009; Sussillo

et al., 2015; Wang et al., 2018). We compute the network output activity z(t) at

time t as

z(t) = m
ᵀ
f(xE(t)) + b , (2.6)

wherem ,xE(t) ∈ RM , the quantity M is the number of excitatory neurons, xE(t) is

the excitatory neuronal activity, and f is the gain function (see Eqn. (2.2)). Shortly,

we will discuss how we fit the readout weights m and the offset b.

To generate target muscle activity of duration T = 500 ms, we draw muscle ac-

tivities from a Gaussian process with a covariance functionK ∈ [0, T]×[0, T]→ R≥0

that consists of a product of a squared-exponential kernel (to enforce temporal

smoothness) and a non-stationary kernel that produces a temporal envelope simi-

lar to that of real EMG data during reaching (Churchland et al., 2012). Specifically,

K(t, t′) = e−
(t−t′)2

2`2 × E(t/σ)× E(t′/σ) , (2.7)

39

with E(t) = te(−t2/4). The parameter σ controls the duration of the generated mus-

cle activity. Based on test simulations, we find that setting σ = 110 ms is a reason-

able choice for muscle activity that lasts 500 ms (see Fig. 2.5b). The parameter `

controls the autocorrelation of the activity. Therefore, ` affects the variability of the

muscle activity; a small value of ` implies that the activity is more variable and vice

versa (see below for our choice of ` and also see Fig. 2.5b for two example muscle

activities). We also multiply the resulting muscle activity by a constant to ensure

that it has the same order of magnitude as the neuronal firing rates, and we use a

sampling rate of 400 Hz (i.e., target muscle activity is a vector of length 200).

In other words, target muscle activity that we generate corresponds to Lu

where LLᵀ = K, K ∈ R200×200 is the covariance function, u ∈ R200, and u ∼
N (0, I) (i.e., elements of the vector u are drawn independently and identically

from a Gaussian distribution with mean 0 standard deviation 1).

We generate 20 muscle activities using 20 different evenly-spaced values of `

between ` = 35 ms and ` = 80 ms (see Fig. 2.5b). (See also Fig. 2.7 in Ap-

pendix 2.C where we plot the power spectrum of the generated muscle activity

for l = 35 ms and l = 80 ms.) We then generate neuronal dynamics that last

T = 500 ms using the initial condition x0 that maximises the evoked energy ε(x0)

in Eqn. (1.17) for gain values between g = 0.02 and g = 3 in increments of 0.02.

We use the nonlinear gain function f in Eqn. (2.2). We fit the readout weights

m and offset b in Eqn. (2.6) independently for each g and each of the 20 target

muscle activities. To ameliorate any issues of overfitting, we use 100 noisy trials in

which we add Gaussian white noise to the initial condition x0 for each trial with a

signal-to-noise ratio of 30 dB (Hennequin et al., 2014).

For each g and each `, we compute the the R-squared (R2) goodness of fit

between the network output z(t) and the target activity using the trial with no noise

40

. . .
Initial

cond.

Gain
mod.

Network
output
(EMG)

Cortical network Exc.
Inh.

100 ms

E
M

G
E

M
G

In
cr

ea
si

ng
 ta

rg
et

 v
ar

ia
bi

lit
y

Target
activity

(18 more movements)
...

a b

Figure 2.5: a, Illustration of our recurrent neuronal network model, in which we can control

the neuronal gains of all neurons and we compute the network output as a weighted linear

combination of the excitatory neuronal firing rates. The network output acts as a proxy for

muscle electromyogram (EMG) activity (see main text). b, Examples of simulated muscle

activity with (bottom) ` = 80 ms and (top) ` = 35 ms in Eqn. (2.7). We generate 20 muscle

activity variants using 20 different evenly-spaced values of ` between 35 ms and 80 ms. We

use these muscle activities to generate the results that we show in Fig. 2.6. (See the main

text for further details.)

added to the initial condition. In mathematical terms, the goodness of fit is

R2 = 1−
∑T

t=1(z(t)− y(t))2∑T
t=1(y(t)− ȳ)2

, (2.8)

where y(t) is the target muscle activity at time t and ȳ = 1
T

∑T
t=1 y(t). Therefore,

an R-squared of R2 = 0 implies that the performance is as bad as if the output z

is equal to the mean of the target y and thus does not capture any variations in

output.

In Fig. 2.6a, we show a heatmap of R2 values for each of the 20 target muscle

activities over a relevant range of gains. With red crosses, we indicate the maxi-

mum R2 value for each of the 20 targets. We observe a strong positive correlation

between global gain and target variability. In other words, a larger global gain cor-

responds to larger variability (i.e., a small value of ` in Eqn. (2.7)) in target output

activity. Because we fit the readout weights independently for each g and each

target, this result implies that there are more suitable gains for different variabilities

41

Target variability (l)Target variability (l)Target variability (l)

G
ai

n

0.8

1

1.2

1.2

1.6

2

2.4

0

0.2

0.4

0.6

0.8

1

R22

2.4

1.6

80 35

G
ai

n

a b c

0.9

0.92

0.94

0.96

0.98

1

R2

80 35 80 35

Figure 2.6: Relationship between gain modulation and target output variability. a, Heatmap

of the goodness of fit (determined by the R2) for 20 different variabilities in target muscle

activity (which correspond to 20 different evenly-spaced values of ` between 35 ms and

80 ms) and different levels of neuronal gain. Readout weights are fitted independently for

each gain increment and each of the 20 targets. Red crosses indicate the maximum R2

for each of the 20 targets. b, Same as panel (a) except that we fit the readout weights

using a gain of one to all 20 targets simultaneously. The heatmap shows the R2 values

obtained when varying the neuronal gain for each of the 20 targets when keeping the

readout weights fixed. c, Same as panel (b) except that we fit the readout weights using a

gain of two to all 20 targets simultaneously.

in muscle activity even if we optimise the readout weights for each gain and each

target. However, we note that the R2 values are all above 0.9 in the plot. Such

large R2 values likely arise because we fit the readout weights independently for

each gain increment and target.

To demonstrate this relationship between global gain and output variability even

more clearly, we now fit the readout weights to all 20 targets simultaneously (using

100 noisy trials of neuronal activity, as mentioned above) with the gain set to 1.

Therefore, the resulting readout weights produce a network output with a maximum

mean R2 across the 20 targets when the gain is set to 1. We then vary the gain

while keeping the readout weights fixed, and examine the resulting R2 value for

each of the 20 targets. We find a strong positive correlation between gain and

target variability, and a gain of 1 produces a maximum R2 value for the target that

42

has approximately the mean variability over the 20 targets (see Fig. 2.6b). This

relationship appears to be (mostly) invariant to the gain that we use when fitting

the readout weights. This is suggested by Fig. 2.6c, where we plot results from a

similar simulation but we instead use a gain of 2 to fit the readout weights. However,

we do observe a more nonlinear relationship between the optimal gain and target

variability compared with when we used a gain of 1. This suggests that changing

the gain to relatively large or small values, respectively, while keeping the readout

weights fixed does not necessarily lead to improved performance for target outputs

that exhibit relatively large or small variability, respectively.

In summary, the results that we present in this section suggest that more in-

tricate muscle activities can be most accurately generated using a larger global

gain. Because there is a close relationship between dopamine and neuronal gain

(Hernandez-Lopez et al., 2000; Thurley et al., 2008), our results align with observa-

tions that dopamine controls the vigour of movements (Niv et al., 2007; Panigrahi

et al., 2015) and that fine-tuned motor control becomes harder with decreasing

levels of dopamine (for example, as seen with Parkinson’s disease (Damier et al.,

1999; Panigrahi et al., 2015)).

2.7 Conclusions and discussion

In this chapter, we laid the foundations for understanding how gain modulation

affects neuronal dynamics in recurrent neuronal-network models by studying the

effects of global gain modulation. We derived a stability condition (see Eqn. (2.3))

relating the neuronal gain to the spectral abscissa of the weight matrix that guaran-

tees that the neuronal dynamics governed by Eqn. (2.1) are locally asymptotically

stable around 0. Our stability condition illustrates that there is an inverse relation-

ship between the global neuronal gain g and the spectral abscissa of the weight

matrix (see Eqn. (2.3) and the curves in Fig. 2.2b). We provided supporting numer-

ical simulations using both a nonlinear and a linear gain function, and we observed

43

that for the nonlinear gain function that we used, the dynamics in our simulations al-

ways returned to baseline — suggesting that the basin of attraction to 0 was large.

This result is useful in the context of neuronal networks, because inputs to cortical

circuits are not guaranteed to be small. To produce desired patterns of temporal

activity, cortical inputs can vary substantially in magnitude yet the neuronal activity

typically returns to baseline (Churchland et al., 2012). This is particularly relevant

for cortical motor circuits, because these circuits are thought to act as dynamical

systems, where the neuronal dynamics relax to baseline once all external inputs

are removed (Churchland et al., 2010; Shenoy et al., 2013). Therefore, the base-

line firing rate in these circuits appears to be stable and the basin of attraction to

baseline is relatively large. However, it may be several years before one can exper-

imentally asses whether the stability condition that we derived is actually satisfied

in cortical networks.

One could also extend our stability condition Eqn. (2.3) for the case of a gain

function in which each neuron has its own gain value (e.g., see Eqn. (1.12); also

see Chapter 3). (Note that the gain function that we used in this chapter (see

Eqn. (2.2)) is a special case of the gain function in Eqn. (1.12) because we fix all

gains to the same value.) From studying Eqn. (2.13), the condition guaranteeing

asymptotic stability of the neuronal dynamics when using such a gain function f in

Eqn. (1.12) with f ′(0) = g, where the vector g consists of the gain values for each

neuron, would be α(W × diag(g)) < 1. We omitted using such a gain function

in our analysis because we devoted this chapter to investigations of global gain

modulation.

We also studied the relationships between modifying the time constant τ in

Eqn. (2.1) and modifying the gain g, and we examined the resulting spectrum

changes. From our analysis and simulations, we suggested that by changing τ

and g in concert so that τ
g

= 200, one can modify only the amplitude of the resulting

linear neuronal dynamics while their frequency of oscillation is unaffected. We then

44

provided supporting numerical simulations using a nonlinear gain function and a

recurrent neuronal-network model and observed such changes in the frequency

and amplitude of the neuronal dynamics that we expected from changes in the

neuronal gain and time constant τ . Following these results, and in line with recent

experimental evidence suggesting that neuronal gain is associated with variability

in muscle force activity (Vestergaard and Berg, 2015; Wei et al., 2014), we inves-

tigated the relationship between global gain modulation in model cortical circuits

and variability in target network outputs. We found that the global gain of a recur-

rent neuronal network correlates positively with variability in the target output. That

is, there are more suitable gains for different variabilities in target activity (indepen-

dent of the readout weights), where a large gain is associated with large variability

in the target. This suggests the possibility that the global gain of cortical motor

circuits is modulated in accordance with the variability in the desired muscle activ-

ity; in line with experimental observations of gain changes in spinal motoneurons

(Vestergaard and Berg, 2015). Additionally, our results align with experimental ob-

servations that dopamine (which can affect neuronal gain (Hernandez-Lopez et al.,

2000; Thurley et al., 2008)) controls the vigour of movements (Niv et al., 2007; Pan-

igrahi et al., 2015) and that decreased levels of dopamine lead to deficits in fine-

tuned motor control (as is the case in Parkinson’s disease (Damier et al., 1999;

Panigrahi et al., 2015)).

We used two different, commonly adopted, gain functions: a tanh function and a

linear variant. However, as we state in the proof of our analytical result in Appendix

2.B, we define the gain as the slope of the gain function at x = 0. Therefore, our

stability condition Eqn. (2.3) guarantees local asymptotic stability for any (at least

locally) smooth function that has a nonzero derivative at x = 0. Therefore, our

stability condition Eqn. (2.3) holds for a much larger class of functions than the

ones that we tested (for example, supralinear input–output functions may exist in

sensory cortices (Hennequin et al., 2018; Rubin et al., 2015)). As an example of

45

such a (rectified) supralinear gain function, one could use f(xi) = g(xi +
√
r0)2− r0

for xi > −
√
r0 and f(xi) = 0 otherwise. For this function, following our derivation

in Appendix 2.B, the condition for local asymptotic stability is g < 1/(2
√
r0α(W)).

However, we emphasise that for such an expansive nonlinear function, neuronal

activity that is too far away from 0 may not return to 0 (i.e., the basin of attraction

to 0 is likely small).

When simulating neuronal dynamics using stability-optimised circuits, we used

the initial condition that maximises the evoked energy (see Eqn. (1.17)) of the cor-

responding linear neuronal dynamics. In future studies, one could investigate the

effects of using different initial conditions and whether they can produce better fits

for different target output activities. For example, it is plausible that low-frequency

dynamics may more easily generate low-frequency muscle activity whereas it may

be more difficult for a linear combination of high-frequency neuronal dynamics to

produce a desired low-frequency output.

In this chapter, we only studied the effects of identically modulating the gain of

all neurons in recurrent neuronal networks. In Chapter 3, we study the effects of

independently modulating the gain of single neurons.

2.A Definitions and theorems

In this appendix, we give any mathematical definitions that we have used in this

chapter, as well as definitions that are necessary for the proofs that we show in

Appendix 2.B.

Definition 1 (Evolution operator). Consider the linear differential equation

dx(t)

dt
= Ax(t) . (2.9)

The unique solution to Eqn. (2.9) can be written in the form

x(t) = T (t, s)x(s) , (2.10)

46

where T (t, s) is the associated evolution operator of Eqn. (2.9) (Pereira, 2011).

(The matrix T (t, s) is also called the fundamental matrix Teschl (2012).)

Definition 2 (Uniform contraction). Let T (t, s) be the evolution operator associated

with Eqn. (2.9). The operator T (t, s) is said to be a uniform contraction if

‖T (t, s)‖ ≤ Ce−η(t−s) ,

where C and η are positive constants (Pereira, 2011).

Definition 3 (Global asymptotic stability). If the largest real part in the spectrum of

A in the linear system Eqn. (2.9) is less than 0 (i.e., α(A) < 0; see Eqn. (1.11)),

then the origin is globally asymptotically stable and x→ 0 as t→∞.

Remark 1. The trivial solution of Eqn. (2.9) is globally asymptotically stable if and

only if the evolution operator is a uniform contraction (Pereira, 2011, Thm. 4).

Theorem 1. Assume that the matrix T (t, s) of Eqn. (2.10) has a uniform contrac-

tion. Consider the perturbed equation

dy(t)

dt
= Ay(t) +R(y(t)) ,

and assume that

‖R(y)‖ ≤M‖y‖1+c

for some M, c > 0. The origin is then locally asymptotically stable.

We can use Theorem 1 to prove that if the linearisation of a nonlinear system

is asymptotically stable about the origin, then the linearised system describes the

local behaviour of the nonlinear system near the origin (Pereira, 2011).

Finally, we state the following result from dynamical-systems theory (Teschl,

2012) that plays a central role in our analysis.

Theorem 2. Equation. (2.9) is globally asymptotically stable if and only if α(A) < 0.

Moreover, there is a positive constant κ for every a < −α(A) such that

‖etA‖ ≤ κe−ta , t ≥ 0 .

47

2.B Main analytical result from Chapter 2 and proof

In this section, we present our theorem that guarantees that the trivial solution of

Eqn. (2.1) is locally asymptotically stable.

Theorem 3 (Local stability of neuronal activity in recurrent neuronal networks). If

the gain function f in Eqn. (2.1) is a differentiable (possibly nonlinear) function (with

f(0) = 0 and f ′(0) = g 6= 0), then if α(W) < g−1, as t→∞, we have

‖x(t)‖ ≤ C‖h‖
η

, (2.11)

for sufficiently small ‖h‖, where ‖h‖ = supt ‖h(t)‖, and where C > 0, η < 1 −
gα(W).

Theorem 3 guarantees that the trivial solution to Eqn. (2.1) is locally asymptoti-

cally stable if the external input is sufficiently small. We now state a useful corollary

of this result.

Corollary 1 (Linear gain function). If there is no external input — i.e., h = 0 and

the gain function f(x) is such that f(x) = gx for g ∈ R — then the trivial solution

to Eqn. (2.1) is globally asymptotically stable if and only if α(W) < g−1. Moreover,

there exists K > 0 such that

‖x(t)‖ ≤ Ke−ηt/τ , t ≥ 0 , (2.12)

where η < 1− gα(W).

Proof of Theorem 3. For some t such that ‖x(t)‖ is sufficiently small, we can rewrite

Eqn. (2.1) by expanding the gain function f(x) in a Taylor series and rearranging

terms to obtain

τ
dx

dt
= W (f(0) + f ′(0)x(t) +O(x(t))2)− x(t) + h(t)

= [W f ′(0)− I]x(t) + h(t) +R(x) , (2.13)

48

where ‖R(x)‖ = O(x2). We now truncate our Taylor expansion to first order to

obtain

τ
dx

dt
= [W g − I]x(t) + h(t) , (2.14)

where g = f ′(0).

For the homogeneous part of Eqn. (2.14),

τ
dx

dt
= [W g − I]x(t) , (2.15)

we can construct a solution in terms of an evolution operator T (t, s), as stated in

Definition 1. Specifically, we can write

x(t) = T (t, s)x(s) . (2.16)

From integrating Eqn. (2.15), we find that T (t, s) = e
(t−s)
τ

(W g−I). However, for

our purposes, we simply need to obtain a bound on T (t, s). For T (t, s) to be a

uniform contraction, which implies that the origin is locally asymptotically stable,

we must have α(W g − I) < 0 because of Theorem 2. This then implies that

α(W g) < 1 (see Lemma 1 in Appendix B where we discuss how subtraction of

a diagonal matrix (e.g., I) affects the spectrum of the resulting matrix). Finally,

because α(W g) = gα(W), as g is a scalar, we obtain the inequality g < 1/α(W)

guaranteeing local asymptotic stability. This yields the bound

‖T (t, s)‖ ≤ Ce−η(t−s)/τ , (2.17)

where C > 0 and η < 1− gα(W).

Note that we truncated our Taylor expansion up to first order in Eqn. (2.14). We

therefore have to check that the higher-order terms do not affect the stability of

the trivial solution. From Theorem 1, we know that because ‖R(x)‖ = O(x2) in

Eqn. (2.13), so the stability of the trivial solution is not affected by these higher-

order terms and the origin is asymptotically stable. It remains to study the inhomo-

geneous Eqn. (2.14) due to external input h(t).

49

Using variation of parameters (Teschl, 2012, Section 3.4) (which is also called

variation of constants), in Eqn. (2.14), we obtain

x(t) = T (t, 0)x0 +
1

τ

∫ t

0

T (t, u)h(u)du , (2.18)

where T (t, s) is the evolution operator corresponding to the homogeneous solution

(2.16). We note that for a tonic input h(t) = h, and using T (t, s) = e
(t−s)
τ

(W g−I) (see

above), for long times (t→∞), we obtain x(t)→ (W g − I)−1h.

For a time-dependent input h(t), using the triangle inequality and our bounds

on the evolution operator in Eqn. (2.17), for sufficiently small ‖h‖, where we define

‖h‖ = sup{‖h(u)‖ : u ≤ t}, it follows that

‖x(t)‖ ≤ ‖T (t, 0)‖‖x0‖+
1

τ

∫ t

0

‖T (t, u)‖‖h(u)‖du

≤ Ce−ηt/τ‖x0‖+
1

τ

∫ t

0

Ce−η(t−u)/τ‖h‖du

= Ce−ηt/τ‖x0‖+ C‖h‖
[1− e−ηt/τ

η

]
.

Letting t→∞ and using η < 1− gα(W), we obtain

‖x(t)‖ ≤ µ‖h‖ ,

where µ = C/η + o(1). This concludes the proof of Theorem 3.

We now briefly explain how Corollary 1 is a direct result of Theorem 3.

Proof of Corollary 1. For a linear gain function f(x) = gx, in the absence of ex-

ternal input (i.e., h = 0), we obtain the following homogeneous linear differential

equation:

τ
dx

dt
= [W g − I]x(t) . (2.19)

Note from Eqn. (2.15) that g < 1/α(W) is necessary for the origin to be asymp-

totically stable. Furthermore, we can bound the associated evolution operator

T (t, 0) of the solution to Eqn. (2.19),

x(t) = T (t, 0)x0 ,

50

as

‖T (t, 0)‖ ≤ Ce−ηt/τ ,

where C > 0 and η < 1− gα(W). We then have

‖x(t)‖ ≤ C ′e−ηt/τ , t ≥ 0 ,

where C ′ = C‖x0‖.

51

2.C Supplementary figures

0 40 80 120 160 200

Frequency (Hz)

-80

-60

-40

-20

0

20

P
ow

er
/fr

eq
ue

nc
y

(d
B

/H
z)

l = 35 l = 80

Figure 2.7: We plot the power spectrum of the target muscle activity (for both l = 35 ms

and l = 80 ms) that we show in Fig. 2.5 and which we use in Fig. 2.6. Lower values of l in

Eqn. (2.7) correspond to more ‘variable’ muscle activity, which is also reflected in its power

spectrum.

52

CHAPTER 3

Single-neuron gain modulation

In this chapter, we study the effects of independently modulating the gain of indi-

vidual neurons — which we call single-neuron gain modulation — in recurrent neu-

ronal networks. In contrast to identically changing the gain of all neurons (which we

explored in Chapter 2), we find that independently modulating each neuron’s gain

enables a much greater variety of neuronal activities. We show that by changing

the gain of even only one neuron in a recurrent neuronal network, we can sub-

stantially reduce errors between a network output and a target. We also introduce

a reward-based learning rule that reduces errors in network outputs by iteratively

changing each neuron’s gain. Finally, we demonstrate the effectiveness of our

learning rule in various different models. The results that we present from Sec-

tion 3.4 to Section 3.7 form part of an article that has been accepted at Nature

Neuroscience: Jake P. Stroud, Mason A. Porter, Guillaume Hennequin, and Tim P.

Vogels, ‘Motor primitives in space and time via targeted gain modulation in cortical

networks’.

53

3.1 Introduction

There have been many studies that examine how synaptic modifications in neu-

ronal networks can reduce network output errors (Hoerzer et al., 2014; Legen-

stein et al., 2010; Miconi, 2017; Sussillo and Abbott, 2009; Sussillo et al., 2015).

Such approaches have received much attention because synaptic changes are

thought to underlie learning for many types of tasks, including motor tasks (which

is the main topic of study in this thesis) (Hosp et al., 2011; Kida and Mitsushima,

2018; Molina-Luna et al., 2009; Peters et al., 2014; Rosenbaum, 2009; Sanes and

Donoghue, 2000). However, some recent experimental evidence suggests that

there are few synaptic changes in both premotor and primary motor cortices in

macaque monkeys on the time scale of a single experimental session when learn-

ing new motor tasks (Perich et al., 2017; Sadtler et al., 2014). Additionally, it can be

difficult for motor cortex to generate certain new patterns of neural activity, at least

on the time scale of hours (Golub et al., 2018; Sadtler et al., 2014). This is thought

to be the case because pre-existing connectivity in motor cortex constrains the

possible patterns of neural activities that can be generated (Sadtler et al., 2014).

Therefore, based on these results, there may be few synaptic changes in motor

cortices on short time scales when learning new movements.

Other experimental studies suggest that movement-specific neural activity in

motor cortex is generated from movement-specific preparatory states that set the

initial condition of the neuronal activity (Churchland et al., 2010, 2012; Shenoy

et al., 2013). This suggests the possibility that when learning new movements, a

new initial condition is created to generate the required neuronal activity while the

network connectivity remains fixed. However, changing only the initial condition

of the neuronal activity in cortical motor circuits may limit the variety of possible

movements that can be generated (for example, the time scale of decay of neuronal

activity is not robustly affected by changes in the initial condition).

54

Alternatively, changes can also occur in the input–output gain of neurons dur-

ing motor learning both in motor cortex (Kida and Mitsushima, 2018) and in down-

stream spinal motoneurons (Vestergaard and Berg, 2015; Wei et al., 2014). Gain

modulation is also a possible mechanism to generate new patterns of neural ac-

tivity while circuit connectivity remains fixed (Salinas and Sejnowski, 2001; Salinas

and Thier, 2000; Swinehart et al., 2004; Zhang and Abbott, 2000). However, there

have been relatively few theoretical studies of gain modulation in neuronal net-

works. One such study demonstrated that supervised training of neuronal gains in

the input layer of a feedforward network can enable learning of a variety of target

outputs (Swinehart et al., 2004). In another study, it was shown that indepen-

dently modulating the gain of neurons in a recurrent neuronal network can allow

the network output to change substantially (Zhang and Abbott, 2000). However, it

is unclear what the effects of single-neuron gain modulation may be in biologically

motivated recurrent neuronal-network models.

In this chapter, we study the possibility of using single-neuron gain modulation

in recurrent neuronal networks with fixed connectivity to generate desired target

outputs. In Section 3.3, we investigate the effectiveness of changing the gain of

only one neuron in a recurrent neuronal network at reducing network output er-

rors. In Section 3.4, we introduce a reward-based learning rule for independently

changing the gain of each neuron in a recurrent neuronal network so that network

output errors are reduced. In Sections 3.5–3.7, we demonstrate the effectiveness

of the learning rule in a variety of models.

3.2 Methods

We use the same model as the one that we discussed in Sections 1.2.1.3 and

1.2.4. For convenience, we reproduce our full model description below.

55

3.2.1 Neuronal dynamics

We study recurrent neuronal networks of N = 2M neurons (of which M are excita-

tory and M are inhibitory) for which the neuronal activity x(t) = (x1(t), . . . , xN(t))ᵀ

evolves according to the dynamical system

τ
dx(t)

dt
= −x(t) +W f(x(t); g) , (3.1)

from some initial condition x(0) = x0. In Eqn. (3.1), f(x; g) denotes the element-

wise application of the static scalar gain function f to the neuronal activity vector x.

In keeping with Hennequin et al. (2014), we set the single-neuron time constant to

be τ = 200 ms so that neuronal activity transients have a similar duration to those

observed experimentally during reaching tasks (Churchland et al., 2012). The gain

function f , which governs the transformation of neuronal activity x into firing rates

relative to a baseline rate r0, is

f(xi; gi) =


r0 tanh(gixi/r0) , if xi < 0 ,

(rmax − r0) tanh(gixi/(rmax − r0)) , if xi ≥ 0 ,

(3.2)

where the gain value gi is the slope of the function f at xi = 0. Therefore, gi

controls the input–output sensitivity of neuron i (Rajan et al., 2010). We use a

baseline rate of r0 = 20 Hz and a maximum firing rate of rmax = 100 Hz so that the

resulting neuronal firing rates are consistent with observations (Churchland et al.,

2012; Kao et al., 2015; Lara et al., 2018) (but see Section 3.7 where we use a

different baseline firing rate). As we mentioned in Section 1.2.1, f(x; g) describes

the neuronal firing rates relative to the baseline rate r0. (For a visualisation of f ,

see the curves in Fig. 1.3 in Section 1.2.1.3, where we plot f for two different values

of the gain gi.)

Unless we state otherwise, we generate the synaptic weight matrixW in Eqn. (3.1)

in line with Hennequin et al. (2014). That is, we use stability-optimised circuits

(see Section 1.2.4). We use the initial condition x(t = 0) = x0 that maximises

56

the evoked energy ε(x0) in Eqn. (C.20). (See Appendix C.2 for a discussion of

how we obtain such an initial condition.) By choosing such a weight matrix and

initial condition, the neuronal dynamics governed by Eqn. (3.1) display complex

multiphasic activity transients; these are similar to those observed in motor cortex

during movement execution (Hennequin et al., 2014) (see Sections 1.2.4 and 1.3).

3.2.2 Creating target network outputs reminiscent of muscle activity

To create target network outputs that resemble electromyogram (EMG) recordings

of muscle activity, we draw muscle activities of duration T = 500 ms from a Gaus-

sian process with a covariance function K ∈ [0, T] × [0, T] → R≥0 that consists of

a product of a squared-exponential kernel (to enforce temporal smoothness) and

a non-stationary kernel that produces a temporal envelope similar to that of real

EMG data during reaching (Churchland et al., 2012). Specifically,

K(t, t′) = e−
(t−t′)2

2`2 × E(t/σ)× E(t′/σ) , (3.3)

with E(t) = te(−t2/4). The parameter σ controls the duration of the generated mus-

cle activity and ` controls the autocorrelation of the muscle activity. Based on test

simulations, we find that σ = 110 ms and ` = 50 ms generates realistic muscle

activity, in line with experimental observations, that lasts approximately 500 ms

(Churchland et al., 2012; Russo et al., 2018; Sussillo et al., 2015) (see Section 2.6

for a discussion of this). We also multiply the resulting muscle activity by a constant

to ensure that it has the same order of magnitude as the neuronal activity, and we

use a sampling rate of 400 Hz (i.e., target muscle activity is a vector of length 200).

In other words, target muscle activity that we generate corresponds to Lu

where LLᵀ = K, K ∈ R200×200 is the covariance function, u ∈ R200, and u ∼
N (0, I) (i.e., elements of the vector u are drawn independently and identically

from a Gaussian distribution with mean 0 standard deviation 1).

57

3.2.3 Network output

Throughout this thesis, we generate network outputs as weighted linear combina-

tions of excitatory neuronal firing rates. A similar approach for generating network

outputs has been used many times previously (Hennequin et al., 2014; Hoerzer

et al., 2014; Russo et al., 2018; Sussillo and Abbott, 2009; Sussillo et al., 2015;

Wang et al., 2018).

We compute the network output activity z(t) at time t as

z(t) = m
ᵀ
f(xE(t); gE) + b , (3.4)

where m ,xE(t) , gE ∈ RM , the quantity M is the number of excitatory neurons,

xE(t) is the excitatory neuronal activity, and f is the gain function (see Eqn. (3.2)).

We fit the readout weights m and the offset b to an initial target output (see the

right-hand side of Fig. 3.1a; also see each subsequent section for further details)

using least-squares regression with all gains set to 1. To ameliorate any issues of

overfitting, we use 100 noisy trials, in which we add Gaussian white noise to the

initial condition x0 for each trial with a signal-to-noise ratio of 30 dB (Hennequin

et al., 2014).

3.3 Effects of changing the gain of one neuron in a recurrent

neuronal network

In this section, we investigate the effects of changing the gain of one neuron in

a 200-neuron network. Starting with all gains set to 1, we fit the readout weights

so that the network output generates a target output (see Fig. 3.1a and Section

3.2.3). We find that doubling the gain of one neuron from 1 to 2 causes an increase

in the amplitude and frequency of its firing-rate activity, but the other neurons’ firing

rates appear to change only by a comparatively small amount (see Fig. 3.1b). The

observation of an increase in the frequency and amplitude of the firing rate of the

58

. . .

. . .

Initial

cond.

Gain
mod.

Network
output
(EMG)

E
M

G

Cortical network Exc.
Inh.

Target
Network output

a

b

100 ms

100 ms

5 Hz

100 ms

100 ms

F
iri

ng
 r

at
e

(H
z)

Figure 3.1: Effects of modulating the gain of only one neuron in a recurrent neuronal

network. a, Illustration of the our model setup. On the left, we show that we can control

the gain of individual neurons in a recurrent neuronal network. On the right, we show the

network output in black and the target output in orange (see Section 3.3). The network

output acts as a proxy for muscle electromyogram (EMG) activity (see Section 3.2.2). b,

We plot the firing rates of 20 neurons in grey, with (left) all gains set to 1 and (right) after

setting the gain of one neuron to 2. The blue curves show the firing rate of the neuron

that we gain modulated. In the inset on the far right, the black curve shows the network

output after setting the gain of the afforementioned neuron to 2. In orange, we also show

the same target that we showed in panel (a).

gain-modulated neuron is in line with the effects that we found previously in Section

2.5. We also note that the network output is altered after modulating the gain of

the aforementioned neuron. (See the inset in the top right of Fig. 3.1b.)

We now ask the following question: Can we substantially reduce the error be-

tween the network output and a new target output by modulating the gain of only

one neuron? (See Eqn. (D.1) for how we calculate errors.) For the same weight

matrix and readout weights that we used in Fig. 3.1, we generate a new target

(which we call target A) and we separately change the gain of each neuron, one at

a time, while keeping the gain of each other neuron fixed at 1. We find that for one

59

specific neuron, increasing its gain to approximately 5.5 maximally (across all neu-

rons and tested gains) reduces the error between the network output and target A

(see the blue curve in Fig. 3.2a). By setting this neuron’s gain to approximately 5.5,

the network output is altered substantially so that it is closer to target A. (Compare

the black and blue curves Fig. 3.2c.)

We also generate another target, which we call target B, and we find that an-

other specific neuron and gain maximally (across all neurons and tested gains)

reduces the error between the network output and target B (see the red curve in

Fig. 3.2d). In fact, setting this neuron’s gain to 0 (i.e., effectively removing this

neuron from the network) maximally reduces the error between the network output

and target B. (See the minimum of the red curve in Fig. 3.2d.) Interestingly, the two

neurons that maximally reduce the output error for targets A and B, respectively,

also reduce the error for targets B and A, respectively (see Figs. 3.2a,b,d,e).

However, we find that the majority of neurons do not substantially reduce the

error between a network output and a target (see Figs. 3.2b,e). To illustrate this,

we plot the error versus neuronal gain for a neuron chosen uniformly at random

(see the yellow curves in Figs. 3.2a,d). We find that this neuron does not reduce

the error substantially for any tested gain value and for either target.

3.4 A reward-based learning rule for single-neuron input–output

gains

In this section, we ask the following question: Can we accurately generate a novel

target output by independently modulating the gain of all neurons simultaneously?

After our initial investigations into single-neuron gain modulation in Section 3.3, we

now use a biologically-inspired, reward-based learning rule that iteratively changes

each neuron’s gain so that the error between the network output and a target is

reduced (on average) over training iterations. We adopt this approach for two pri-

60

0 2 4 6
0

2

4

6

8

E
rr

or

0 2 4 6
Neuronal gain

0

1

2

3

4

5

6

E
rr

or

0 10 20 30 40
0.5

1

1.5

2

2.5

3

3.5

E
rr

or

0 10 20 30 40
Percentage of neurons

Neuronal gain Percentage of neurons

100 ms

Network output with
all gains set to 1

Target A

Network output after
gain modulation

0.6

1

1.4

1.8

2.2

2.6
E

rr
or

E
M

G
E

M
G

100 ms

Target B

Smallest error for target A

Smallest error for target B

Randomly-chosen neuron

Network output after
gain modulation

a b c

e fd

Figure 3.2: Reducing network output errors by modulating the gain of only one neuron in

a recurrent neuronal network. a, We plot the error between the network output and target

A (see the main text) versus neuronal gain for 3 neurons. The blue curve shows the error

for the neuron that maximally (across all neurons and tested gains) reduces the error for

target A. The red curve shows the error for the neuron that maximally (across all neurons

and tested gains) reduces the error for target B (see the main text). The yellow curve

shows the error for a neuron chosen uniformly at random. The grey dashed line identifies

the error with all gains set to 1. b, Histogram of the minimum errors for all neurons for

target A. We indicate the minimum error for each of the 3 neurons that we showed in panel

(a) with the coloured arrowheads. c, We show the network output with all gains set to 1

(black curve), target A (grey dashed curve), and the network output after setting the gain of

a neuron so that the error between the network output and target A is reduced maximally

(blue dashed curve). d– e, The same as panels (a)–(b), respectively, except that we show

the errors between the network output and target B. f, We show the initial network output

with all gains set to 1 (black curve), target B (purple dashed curve), and the network output

after setting the gain of a neuron so that the error between the network output and target

B is reduced maximally (red dashed curve).

61

mary reasons: We want an effective method for simultaneously changing multiple

neurons’ gains so that network output errors are reduced; and we want to use an

approach that is biologically plausible.

Most theoretical studies of reward-based learning have investigated synaptic

changes (Frémaux and Gerstner, 2016; Hoerzer et al., 2014; Legenstein et al.,

2010; Mazzoni et al., 1991; Miconi, 2017; Williams, 1992), rather than changes

in neuronal responsiveness. However, in motor control, the input–output gain of

motor neurons can change (Kida and Mitsushima, 2018; Vestergaard and Berg,

2015). It has also been demonstrated experimentally that neuromodulators such

as serotonin and dopamine, which are involved in reward-based learning (Boureau

and Dayan, 2011; Cools et al., 2011; Doya, 2002; Hosp et al., 2011; Luft and

Schwarz, 2009; Molina-Luna et al., 2009), can affect neural input–output sensitivity

(Hernandez-Lopez et al., 2000; Thurley et al., 2008; Wei et al., 2014).

We devise a reward-based node-perturbation learning rule (Mazzoni et al.,

1991) that includes only local information and a single binary reward signal that

reflects a system’s recent performance. We update the gain gi for neuron i after

each training iteration tn (with n = 1, 2, 3, . . .) according to the following learning

rule:

gi(tn) = gi(tn−1) +R(tn−1)(gi(tn−1)− ḡi(tn−1)) + ξi(tn) , (3.5)

where

R(tn) = sgn(ε̄(tn−1)− ε(tn)) , (3.6)

ε̄(tn) = αε̄(tn−1) + (1− α)ε(tn) ,

ḡi(tn) = αḡi(tn−1) + (1− α)gi(tn) ,

where ε(tn) represents the output error at iteration tn (see Eqn. (D.1) for how we cal-

culate errors), sgn is the sign function, ξi(tn) ∼ N (0, 0.0012) is a Gaussian random

variable with mean 0 and standard deviation 0.001, and α = 0.3. The initial modula-

tory signal is R(t0) = 0, and the other initial conditions are ε̄(t0) = ε(t0) (where ε(t0)

62

is the error before training; i.e., with all gains set to 1) and ḡi(t0) = gi(t0) = 1. One

can interpret the terms ḡi and ε̄ as low-pass-filtered gains and errors, respectively,

over recent iterations with a history controlled by the decay rate α (Miconi, 2017).

We use these parameter values in our learning rule for all of our simulations. We

find that varying the standard deviation of the noise term ξ or the factor α has little

effect on the learning dynamics, in line with Hoerzer et al. (2014).

Although our learning rule in Eqn. (3.5) is similar to reward-modulated ‘ex-

ploratory Hebbian’ (EH) synaptic plasticity rules (Hoerzer et al., 2014; Legenstein

et al., 2010; Miconi, 2017), we investigate changes in neuronal gains (i.e., the re-

sponsiveness of neurons) inside a recurrent neuronal network rather than synap-

tic weight changes. The above notwithstanding, we expect our learning rule to

perform well for a variety of learning problems. For example, it can solve credit-

assignment problems, because one can formulate such a node-perturbation learn-

ing rule as reinforcement learning with a scalar reward (Saito et al., 2011).

The modulatory signal R does not provide information about the sign and mag-

nitude of the error, and it also does not indicate the amount that each readout

(if using multiple readouts) contributes to a recent change in performance. The

modulatory signal R indicates only whether performance is better or worse, on av-

erage, compared with previous trials. One can view the modulatory signal as an

abstract model for phasic output of dopaminergic systems in the brain (Frémaux

and Gerstner, 2016; Hosp et al., 2011; Huntley et al., 1992; Molina-Luna et al.,

2009).

We use the following procedure for updating neuronal gains. We update the

gains for iteration t1 according to Eqn. (3.5), and we obtain the network output

from the gain pattern g(t1). We then calculate the error ε(t1) from the output, and

we subsequently calculate the modulatory signal R(t1) and the quantities ε̄(t1) and

ḡ(t1) using Eqn. (3.6). We then repeat this process for all subsequent iterations.

63

3.5 Learning novel network outputs through gain modulation

To demonstrate the effectiveness of the learning rule in Eqn. (3.5), we use a 200-

neuron stability-optimised circuit (see Section 3.2). As in Section 3.3, we fit the

readout weights so that, with all gains set to 1, the initial network output is similar

to real EMG muscle activity when executing a movement. (See the solid black

curve in Fig. 3.3a and see Section 3.2.) We then train the neuronal gains using the

learning rule in Eqn. (3.5) so that the model generates a new target output (see the

solid orange curve in Fig. 3.3a). We find that errors between the network output

and the target tend to decrease monotonically over training iterations, and a few

thousand training iterations are required for the error to saturate to a small value

(see Fig. 3.3b).

During training, the neuronal gains change in a noisy manner because of the

noise term in Eqn. (3.5) (see Fig. 3.3c). After training, the distribution of neuronal

gains closely follows a Gaussian distribution (see Fig. 3.3c); and the same initial

condition for the neuronal activity can produce either of two distinct outputs, de-

pending on the applied gain pattern (see Fig. 3.3d).

Although the network output is substantially altered after training, the neuronal

firing rates change only slightly (see Fig. 3.4a). Independent training sessions on

the same target produce nonidentical but correlated gain patterns (see Fig. 3.4b).

The learned gain patterns are also similarly robust to noisy initial conditions com-

pared to the case of all gains set to 1 (see Fig. 3.4c), except for large signal-to-noise

ratios (i.e., approximately larger than 25 dB). See Appendix 3.A for further details.

We also compare the performance of training through gain modulation with 3

alternative training approaches. We train either the neuronal gains, the initial con-

dition x0, the recurrent weight matrix W , or a rank-1 perturbation of the recurrent

weight matrix using back-propagation. (See Appendix 3.A for further details.) We

find empirically for this task, that training the neuronal gains provides a similar

64

a
Target
reach

Initial
reachE

M
G

100 ms

E
M

G
 (

a.
u.

)

100 ms

Time

0

1

2

3

4

E
rr

or

0 5 10 15
Number of iterations (103)

b

c

E
M

G

d

Switch

. . .

. . .Target
reach

Initial
reach

100 ms

a.u.

0.4

0.6

0.8

1

1.2

1.4

1.6

G
ai

n

0 5 10 15

Neuron 1
Neuron 2

No. of iters. (103)
0 10 20 30
% of neurons

Simulation
results
N)2, σ(1

Figure 3.3: Learning new network outputs through neuron-specific gain modulation. a,

We show the network output with all gains set to 1 (solid black curve) and the target net-

work output (solid orange curve). (See the main text.) These network output activities

act as proxies for electromyogram (EMG) muscle activity when executing a movement,

such as reaching. b, The mean (over 10 independent training sessions) error in network

output decreases during training with neuron-specific modulation. In the inset, we show

five snapshots of network output (indicated by arrowheads) as learning progresses. c,

(Left) Neuronal gain changes during training for 2 example neurons (grey and black) and

10 training sessions. (Right) Histogram of gain values after training. The blue curve is a

Gaussian fit with a mean of 1 and a standard deviation of σ ≈ 0.157. d, Network outputs

(grey curves) with all gains set to 1 and the new learned gain pattern (which we compare

to both targets, given in black and orange) for 10 noisy initial conditions with noise added

to the initial condition x0 with a signal-to-noise ratio of 30 dB.

learning performance (i.e., error reduction) as training the initial condition or the

recurrent weight matrix (see Fig. 3.4d). However, training a rank-1 perturbation

of the weight matrix performs much worse than the 3 aforementioned training ap-

proaches.

65

a b

c d

Initial
condition

Neuronal
gains

Recurrent
weights

Rank-1
pert.

-1

-0.5

0

0.5

1
Gains set to 1 Gain pattern 1 Gain pattern 2

Neuron numberNeuron number Neuron number

P
earson correlationN

eu
ro

n
nu

m
be

r

N
ou

m
be

r
of

 p
ai

rs
 o

f
ga

in
 p

at
te

rn
s

0 0.05 0.1 0.15 0.2 0.25 0.3

Pearson correlation coefficient

0

2

4

6

8

10

10-3

10-2

10-1

100

101

E
rr

or

0 5 10 15 20 25 30

Initial-condition signal-to-noise ratio (dB)

S
um

 o
f s

qu
ar

ed
 e

rr
or

s

All gains set to 1

Trained gain patterns

101

102

103

104

105

Figure 3.4: a, Correlation matrices of the firing rates for all pairs of neurons with (left) all

gains set to 1 and (centre and right) two (of the ten) trained gain patterns for the task in

Fig. 3.3. The order of neurons is the same in all three matrices. As a result of training,

there is not a substantial reorganisation in Pearson correlations between pairs of neurons.

b, Histogram of the Pearson correlation coefficients between the 45 possible pairs of the

10 trained gain patterns that we obtained for the task that we showed in Fig. 3.3. c, Error

between the network output with white Gaussian noise added to the initial condition x0 and

the network output without noise added to x0 for various strengths of the signal-to-noise

ratio. We plot results with all gains set to 1 (blue) and the 10 trained gain patterns (red)

for the task in Fig. 3.3. Shading indicates 1 standard deviation. (See Appendix 3.A for

further details.) d, Box plot of the errors after training independently on 10 different target

movements using back-propagation when training either the initial condition, the neuronal

gains, the recurrent weight matrix, or a rank-1 perturbation of the recurrent weight matrix

(see Appendix 3.A). The dashed black line is the mean error before training. We use Tukey

style for the whiskers.

66

3.6 Learning through gain modulation in different models

We have shown that gain modulation can provide an effective mechanism of gen-

erating new outputs when we use a particular model (which we described in Sec-

tions 3.2 and 3.4). We now demonstrate that learning through gain modulation

is also possible in other, commonly-used variants of our model (Hennequin et al.,

2014; Sussillo et al., 2015). We train neuronal gains on the same task as the one

that we showed in Fig. 3.3 using 3 alternative models. We fit the readout weights

so that prior to any training (i.e., with all gains set to 1), the network output is the

same in each model (see the solid black curve in Fig. 3.3a).

Motor circuits that drive movements also engage in periods of movement prepa-

ration (e.g., see Fig. 1.7) (Churchland et al., 2010; Li et al., 2015; Shenoy et al.,

2013), suggesting a role for gain modulation in shaping circuit dynamics both dur-

ing movement planning and during movement execution. We simulate preparatory

activity using a ramping input to the system (3.1) (Hennequin et al., 2014), such

that gain modulation now directly affects the neuronal activity at the time t = 0 (i.e.,

at movement onset). We use the same ramping input function as the one that was

used in Hennequin et al. (2014). It is exp(t/τon) for t < 0 and exp(−t/τoff) after

movement onset (i.e., t ≥ 0), with an onset time of τon = 400 ms and an offset

time of τoff = 2 ms. We find that learning performance (i.e., error reduction) for the

task that we showed in Fig. 3.3 is slightly poorer if we do employ a ramping input

than if we do not. (Compare the red and blue curves in Fig. 3.5a.) This occurs

because gain modulation during the preparatory phase changes the neuronal ac-

tivity at movement onset, allowing it to leave the null space of the readout weights

(which are fixed) and thus elicit premature muscle activity at movement onset.

We also construct a ‘chaotic’ variant of our model (Sussillo and Abbott, 2009).

These networks are chaotic in the sense that the neuronal dynamics in Eqn. (3.1)

have a positive maximum Lyapunov exponent (see Section 1.2.1.3) (Sompolinsky

67

Original model

Model with
ramping input

E
rr

or

‘Chaotic’ network

Before training After training

Original model Ramping input Alt. learning rule

100 ms100 ms

5 Hz
10 Hz

ba

Number of iterations (103)

‘Chaotic’ network

Alternative
learning rule

0 5 10 15

10-2

10-1

100

Figure 3.5: Learning through neuron-specific gain modulation in different models. a, Mean

error during training for our original model from Fig. 3.3 (red); the model with a biologically

motivated ramping input (blue); the model when using the alternative learning rule (3.8),

in which learning automatically stops at a sufficiently small error (purple); and when using

a ‘chaotic’ recurrent network model (grey). Shading indicates one standard deviation. b,

The firing rates of 4 example neurons before (i.e., with all gains set to 1) and after training

the neuronal gains in (left) our original model, (centre left) our model with a ramping input,

(centre right) our model with the alternative learning rule, and (right) the model when using

a ‘chaotic’ network.

et al., 1988). We use a synaptic weight matrix W (as described in Section 1.2.4)

prior to optimisation, but now we use parameter values of γ = 1 and ρ = 1.5 (see

Section 1.2.4). We also set τ = 20 ms, and we choose the initial condition x0 from a

uniform distribution on the interval [−10, 10]. We use only the first 0.5 s of neuronal

activity, and we train the neuronal gains in this chaotic variant of our model on

the same task that we described in the previous paragraph. We achieve similar

learning performance compared to our original model from Fig. 3.3 (compare the

red and grey curves in Fig. 3.5a), even though the neuronal dynamics are very

different (compare the far left and far right panels in Fig. 3.5b).

Finally, we also use an alternative learning rule to train the neuronal gains;

in this rule, learning slows down as the decrease in error slows down. (See

Eqns. (3.8) and (3.9) in Appendix 3.B.) We find that the error decreases at a faster

rate than that in the original learning rule in Eqns. (3.5) and (3.6) (see the purple

curve in Fig. 3.5a.) We speculate that this occurs because the standard deviation

68

of the noise perturbation term in the alternative learning rule becomes smaller over

training iterations as the error decreases.

Notably, in all of these scenarios, changes in neuronal responsiveness alone

— for example, via inputs from neuromodulatory afferents — can cause dramatic

changes in network outputs, thereby providing an efficient mechanism for rapid

switching between movements, without requiring any changes in either synaptic

architecture or the initial condition.

3.7 Investigating the effects of more strongly nonlinear neuronal

dynamics

We initially choose the baseline firing rate (r0 = 20 Hz in Eqn. (3.1)) to be consis-

tent with experimentally measured firing rates in motor cortex (Churchland et al.,

2012; Kao et al., 2015; Lara et al., 2018). Thus, most of the time, neurons op-

erate within the linear part of their nonlinear gain function f ; that is, the neuronal

dynamics are similar to the case of using the linear gain function f(xi; gi) = gixi

(see Figs. 3.6a,c). To test if our results hold for scenarios with more strongly non-

linear dynamics, we reduce the baseline firing rate to r0 = 5 Hz. This increases the

neuronal activity near the lower-saturation regime (i.e., towards the left part of the

curves in Fig. 1.3) of the gain function (see Figs. 3.6b,c).

With r0 = 5 Hz, we also train the neuronal gains on the same task that we

showed in Fig. 3.3. As expected from the larger range of possible network out-

puts (and improved learning performance) in nonlinear recurrent neuronal-network

models than in linear ones (Hoerzer et al., 2014; Miconi, 2017; Sussillo and Ab-

bott, 2009), we observe better learning performance for r0 = 5 Hz than for r0 = 20

Hz (compare the black and blue curves in Fig. 3.6d), and we obtain a very similar

distribution of gain values after training (see Fig. 3.6e).

69

ba c

100 ms100 ms

0

-5

5

10

15

0

-5

5

10

15 r0 = 20 Hz r0 = 5 Hz(H
z)

R
el

. f
iri

ng
 r

at
e

(H
z)

R
el

. f
iri

ng
 r

at
e

E
rr

or

Gain

E
M

G

e fd

100 ms

r0 = 20 Hz
r0 = 5 Hz

Number of iterations (103)
0 5 10 15

10-3

10-2

10-1

100

0.5 1 1.5
0

10

20

30

%
 o

f n
eu

ro
ns

Simulation
results
N)2, σ(1

Switch

. . .

. . .Target
reach

Initial
reach

-10 0 10 20
-10

0

10

20
r0 = 20 Hz

r0 = 5 Hz

linear gain function
Rel. firing rate with

no
nl

in
ea

r
ga

in
 fu

nc
tio

n
R

el
. f

iri
ng

 r
at

e
w

ith

Figure 3.6: Examining effects of more strongly nonlinear neuronal dynamics by using a

baseline rate of r0 = 5 Hz. a, Relative firing rate of 20 excitatory and 20 inhibitory neu-

rons in a 200-neuron network with r0 = 20 Hz in Eqn. (3.2). b, Relative firing rate of the

same neurons as those in panel (a), but with r0 = 5 Hz. c, The dotted curves show the

relative firing rates of all neurons over time when using the nonlinear gain function f (see

Eqn. (3.2)) with (black) r0 = 20 Hz and (blue) r0 = 5 Hz versus the relative firing rates

that result from using the linear gain function f(xi; gi) = gixi in Eqn. (3.1). We set each

neuronal gain to 1, and we plot the identity line in grey. d, Mean error during training with

r0 = 20 Hz (black) and with r0 = 5 Hz (blue) for the same task that we showed in Fig. 3.3.

Shading indicates one standard deviation. e, Histogram of gain values after training with

r0 = 5 Hz. The black curve is a Gaussian distribution with a mean of 1 and a standard

deviation of σ ≈ 0.157 (i.e., the distribution that we obtained with r0 = 20 Hz in Fig. 3.3c).

f, Network outputs (grey curves) with all gains set to 1 and the new learned gain pattern

with r0 = 5 Hz for 10 noisy initial conditions with noise added to the initial condition x0 with

a signal-to-noise ratio of 30 dB. We show both targets in black and orange.

3.8 Conclusions and discussion

In this chapter, we studied the effects of modulating the gain of individual neurons

in recurrent neuronal networks. We found that increasing the gain of only one

70

neuron substantially affects the frequency and amplitude of that neuron’s firing-rate

activity, whereas the other neurons’ firing rates are changed by a comparatively

small amount. These changes in the firing rate of the gain-modulated neuron are

consistent with the changes that we observed in Section 2.5, where we modulated

the gain of all neurons in recurrent neuronal networks.

We also found that modulating the gain of only one neuron in recurrent neuronal

networks can yield substantial reductions in network output errors. Depending on

the target output, certain neurons and gain values are most effective at reduc-

ing network output errors. In future work, it would be interesting to understand why

such neurons seem to be most effective at reducing network output errors. The an-

swer will likely involve studying the relationships between the network connectivity,

the readout weights, and the firing rates of the neurons. For example, neurons

that substantially reduce network output errors may have strong connections to

the readout unit and the time course of the neuron’s firing rate may correlate with

network output errors over the duration of the movement.

After studying the effects of manually tuning the gain of neurons (see Sec-

tion 3.3), we introduced a reward-based learning rule for iteratively changing the

neuronal gains in recurrent neuronal networks so that network output errors, on av-

erage, are reduced. We were able to generate desired network outputs by training

only neuronal gains, and our approach achieves a similar performance to training

either the initial condition of the neuronal activity or training the recurrent weight

matrix. It would be interesting to understand if these different training approaches

achieve a different learning performance when training on other, perhaps more

complex tasks (e.g., if one uses more readout units).

We showed that learning through gain modulation is effective in a variety of dif-

ferent models, for which the neuronal dynamics can differ substantially. We also

showed that one can improve learning performance in a model in which the neu-

ronal firing rates are more strongly nonlinear. To create more strongly nonlinear

71

neuronal dynamics, we reduced the baseline firing rate to r0 = 5 Hz. Alternatively,

one can scale the initial condition x0 by a factor greater than 1 to create more

strongly nonlinear firing-rate activities (Hennequin et al., 2014). In our simulations,

following Hennequin et al. (2014), we scaled x0 so that ‖x0‖2 = 1.5
√
N , where N

is the number of neurons (see Appendix C.2); and we set the baseline firing rate

to be consistent with experimental recordings (Churchland et al., 2012). If one has

access to relevant data sets, a more comprehensive approach may be to fit both

the baseline firing rate r0 and the factor by which one scales x0 so that the resulting

neuronal firing rates most closely resemble experimental recordings.

We adopted a particular, commonly used functional form for the gain function

(see Eqn. (3.2)). However, it will be important to also test whether our key results

from this chapter hold if we use a strictly positive gain function (see Section 1.2.1.4)

where gain changes also affect the baseline firing rate of neurons. For example,

one could use the following gain function:

f(xi) =


gir0 tanh(xi/r0) + r0 , if xi < 0 ,

gi(rmax − r0) tanh(xi/(rmax − r0)) + r0 , if xi ≥ 0 .

(3.7)

From preliminary simulations, we find that learning through gain changes is still

effective when using such a gain function, however, due to the altered effective

baseline firing rates after gain modulation, network outputs do not automatically

return to baseline at the end of the movement. Therefore, one must choose the

readout weights in such a way that the altered baseline firing rates do not affect

baseline network output activity.

In line with previous research (Churchland et al., 2012; Russo et al., 2018; Sus-

sillo et al., 2015), we trained networks to generate specific target outputs (which

we suggest act as a proxy for muscle-force activity during movement execution).

This is a simplification of actual motor learning, as there are many different pos-

sible muscle activations that can lead to a ‘successful’ movement. For some mo-

tor tasks, it is probably more biologically plausible to train a network to increase

72

the success of the desired movement defined by the position of an end effector

while also minimising the total amount of muscle activity (e.g., see Kambara et al.

(2013); Miconi (2017)). Nevertheless, our learning rule is biologically realistic, in

that it uses only local information and a single scalar signal (which is the total sum

of squared errors) per trial. It thus does not carry detailed information about the

exact way in which an output trajectory deviates from a desired trajectory. We thus

expect that our main results will still be relevant for more biologically realistic mod-

els of motor learning (e.g., using a biophysically realistic model of a human arm

(Miconi, 2017)).

3.A Supplementary simulation details for Fig. 3.4

For Fig. 3.4c, we generate 100 network outputs for each of the 10 trained gain

patterns that we obtained from the task that we showed in Fig. 3.3 using 100 dif-

ferent instances of white Gaussian noise added to the initial condition x0 with a

signal-to-noise ratio of s dB (where we consider values of s between 1 and 30 dB

in increments of 1). We then calculate the square of the Euclidean 2-norm be-

tween each network output and the network output that we obtain when we do not

add noise to the initial condition. We call these squared errors e1. (This vector has

1, 000 entries, with one entry for each network output.) We also generate 1, 000 out-

puts with all gains set to 1 using 1, 000 different instances of white Gaussian noise

added to the network initial condition x0 with a signal-to-noise ratio of s dB. (We

again consider values of s between 1 and 30 dB in increments of 1.) We then cal-

culate the square of the Euclidean 2-norm between each of these network outputs

and the network output that we obtain with all gains set to 1 and no noise added

to the initial condition. We call these squared errors e2. For each signal-to-noise

ratio s, we plot in Fig. 3.4c the mean and standard deviation of e1 (i.e., the squared

error corresponding to the trained gain patterns) in red and e2 (i.e., the squared

error corresponding to all gains set to 1) in blue. We obtain very similar errors for

73

both the trained and untrained (i.e., all gains set to 1) gain patterns, except for large

(i.e., approximately larger than 25 dB) signal-to-noise ratios.

For Fig. 3.4d, we generate 10 different target muscle activities (see Section 3.2.2)

and, independently for each movement, we train either the neuronal gains, the re-

current synaptic weight matrix, the initial condition, or a rank-1 perturbation of the

recurrent synaptic weight matrix using a gradient-descent training procedure (with

gradients that we obtain from back-propagation (Rumelhart et al., 1986)). We use

the same 200-neuron network and readout weights that we used in Fig. 3.3. In

other words, before any training, the network output is the black curve that we

showed in Fig. 3.3d. The cost function for the training procedure is the squared

Euclidean 2-norm between the actual network output and the target output scaled

by the total sum of squares of the target output (i.e., Eqn. (D.1) in Appendix D). We

train in a similar way to when we use our reward-based learning rule, that is, we

provide the initial condition x0 at time t = 0, we then run the neuronal dynamics

until t = 0.5 s and we then update parameters by summing (over all times (except

when we train the initial condition)) partial derivatives of the cost function with re-

spect to the neuronal gains. We run the gradient-descent training procedure until

the difference between the cost function at successive training iterations is below

10−5 (i.e., until the cost saturates to a small value). For the rank-1 perturbation, we

independently train vectors u,v ∈ R200×1 to reduce the error between the network

output, which we obtain from the neuronal dynamics in Eqn. (3.1) withW replaced

byW +uvᵀ, and the target output. We plot the errors for 10 different target outputs

for each of our 4 different training approaches in Fig. 3.4d.

3.B Alternative learning rule

One can also adapt our learning rule so that learning ceases when the modula-

tory signal R(tn) saturates at a sufficiently small value. A way to achieve this is by

instead placing the noise term ξi inside the brackets in Eqn. (3.5), so that the mod-

74

ulatory signal R multiplies ξi, together with changing the sgn function in Eqn. (3.6)

to the tanh function. This yields the following learning rule:

gi(tn) = gi(tn−1) +R(tn−1)(gi(tn−1)− ḡi(tn−1) + ξi(tn)) , (3.8)

where

R(tn) = tanh(η(ε̄(tn−1)− ε(tn))) , (3.9)

ε̄(tn) = αε̄(tn−1) + (1− α)ε(tn) ,

ḡi(tn) = αḡi(tn−1) + (1− α)gi(tn) ,

and η = 50, 000 controls the slope of the tanh function at 0 (i.e., when the low-

pass-filtered error ε̄(tn) matches the current error ε(tn)). Learning now stops when

ε̄(tn−1) = ε(tn); see the purple curve in Fig. 3.5a. We achieve a qualitatively similar

learning performance by using Eqns. (3.8) and (3.9) instead of Eqns. (3.5) and

(3.6), respectively. Compare the purple and red curves in Fig. 3.5a.

75

CHAPTER 4

Coarse, group-based learning of neuronal gains

Thus far in this thesis, we have studied both the effects of identically modulating the

gain of all neurons identically (see Chapter 2) and independently modulating the

gain of each neuron (see Chapter 3) in recurrent neuronal networks. Mechanisms

for realistically changing neuronal gains (such as neuromodulators (Hernandez-

Lopez et al., 2000; Thurley et al., 2008; Wei et al., 2014)), will likely affect multiple

neurons in a similar manner, as opposed to each neuron independently. In line with

the existence of diffuse (i.e., not neuron-specific) neuromodulatory projections to

M1 (Hosp et al., 2011; Huntley et al., 1992; Molina-Luna et al., 2009), in this short

chapter, we investigate the effects of modulating the gain of groups of neurons

in recurrent neuronal networks. That is, we identically modulate neurons within

pre-defined groups. We find that such coarse-grained modulation gives similar

performance to neuron-specific control for as few as 20 groups in a network of 200

neurons when groups are chosen uniformly at random. For a given number of

groups, one can improve performance if, instead of grouping neurons randomly,

we use a specialised grouping for particular target movements based on previous

training sessions.

76

Notably, even with random groupings, we show that network size (i.e., the num-

ber of neurons) hardly affects learning performance when we use a single readout

unit. We find that performance depends much more on the number of groups than

on the number of neurons per group. However, when the task involves two or more

readout units, larger networks do learn better, and achieving a good performance

necessitates using a larger number of independently modulated groups. Finally,

smaller networks typically learn faster, but they ultimately exhibit poorer perfor-

mance, demonstrating that there is a trade-off between network size, number of

groups, and task complexity (i.e., the number of readout units). The results that

we present in this chapter form part of an article that has been accepted at Nature

Neuroscience: Jake P. Stroud, Mason A. Porter, Guillaume Hennequin, and Tim P.

Vogels, ‘Motor primitives in space and time via targeted gain modulation in cortical

networks’.

4.1 Methods

For the simulations in this chapter, we use the same model setup that we used in

Chapter 3. Specifically, Eqn. (3.1) governs the neuronal dynamics, we use the gain

function in Eqn. (3.2) (with r0 = 20 Hz), and we generate the synaptic weight matrix

W in line with Hennequin et al. (2014). That is, we use stability-optimised circuits

(see Section 1.2.4). We use the learning rule that we presented in Section 3.4 to

train neuronal gains so that networks generate desired target outputs. For further

modelling details, see Section 3.2.

4.1.1 Generating groups for group-based gain modulation

We create groups of neurons in recurrent neuronal networks so that neurons in

the same group always have the same gain and we independently modulate the

gain of each group (see Fig. 4.1a). We can generate n (modulatory) groups in a

network of N neurons with 1 ≤ n ≤ N . Thus, if we use n groups, we have n free

77

parameters (which are the gain values for each group), that we can modify. Our

generation mechanism for ‘random groups’ is as follows. For each of the n groups,

we choose N/n neurons uniformly at random without replacement. If n does not

divide N , we assign the remaining neurons to groups uniformly at random.

We also create ‘specialised groups’ for a particular target movement. We obtain

specialised groups by applying k-means clustering (where k is the desired number

of groups) to 10 gain patterns that we obtain from 10 prior independent training

sessions (using neuron-specific modulation; see Section 3.5) on the same target

and which correspond to the minimum error for each training session. We thus

apply k-means clustering to a matrix of size N × 10, where row i contains the gain

values for neuron i from the 10 independent training sessions to the same target.

Applying k-means clustering generates groups so that neurons in the same group

tend to have similar gain values following training using neuron-specific modulation.

4.2 Learning one target movement

In Fig. 4.1b, we show the performance of group-based modulation for the same

task that we showed in Fig. 3.3 (where we used neuron-specific modulation; see

the red curve in Fig. 4.1b). We find that with only a few groups (e.g., 2), per-

formance is poor regardless of whether one uses random or specialised groups.

Using more independently modulated groups improves performance so that 20 ran-

dom groups yields a similar performance as neuron-specific modulation (see the

overlap of the black and red shading in the left panel of Fig. 4.1b). We also find

that 10 specialised groups substantially outperforms any number of random groups

and neuron-specific modulation.

Notice that for a given number of training iterations and when using specialised

groupings, 10 groups tends to outperform 20 groups. This unintuitive behaviour

is likely due to a combination of both our learning rule and the groups that we

use. For example, our learning rule provides a single binary modulatory signal (R

78

ba

E
rr

or

2 10
20 200

Number of groups

Specialised groupingsRandom groupings

Number of iterations (103)
0 5 10 15

10-2

10-1

100

0 5 10 15
10-2

10-1

100

c

20 (specialised)
20 (random)
200 (neuron-specific)

0 4321

2

1

1.5

0.5

0

E
rr

or

185 16
Number of iterations (103)

. . .

. . .Gain
mod.

Initial

cond.
Network
output
(EMG)

Cortical network Exc.
Inh.

Figure 4.1: Learning one target movement with group-based gain modulation. a,

Schematic of our model for group-based gain modulation. We identically modulate neurons

within a group (see Section 4.1.1). We use a 200-neuron network for these simulations.

b, Mean error over 10 training sessions (where shading indicates one standard deviation)

using (left) random and (right) specialised groupings for 2, 10, 20, and 200 (i.e., neuron-

specific) groups. The target output is the same as in Fig. 3.3. c, Mean error during training

for 20 random, 20 specialised, and 200 (i.e., neuron-specific) groups when training idepen-

dently on 5 different target movements.

in Eqn. (3.5)) indicating whether performance is better or worse, on average, com-

pared with previous trials. Therefore, when increasing the number of independently

modulated groups (e.g., 20 versus 10 groups), a change in a single gain value has

a smaller contribution (on average) to a change in performance. For example, if we

have 1 group (i.e., we modulate every neuron identically), we know that a change

in output error due to a change in this one gain value is purely attributable to this

single gain value. Therefore, with fewer groups, one may reach a local minimum

in fewer training iterations, however the error at the local minimum may be large

(e.g., see the yellow curves in Fig. 4.1b). Therefore, there is a trade-off between

the number of groups, the number of training iterations, and the desired final error

after training. These effects are in line with the known reduction in the speed of

learning when increasing the number of free parameters if using node-perturbation

learning rules such as ours (Werfel et al., 2005).

We also note that the method by which we obtain specialised groupings uses

gain patterns that correspond to the minimum error over all training iterations when

using neuron-specific modulation. Neurons that have similar gain values at the

79

minimum error do not necessarily also have correlated gain changes over the entire

course of training. On the contrary, the gain values may have changed in rather

different ways during training. However, when we train with specialised groupings,

the gains within a group are tied to the same value during training and we can

obtain better performance than neuron-specific modulation (see the right panel of

Fig. 4.1b). Therefore, if neurons yield similar gain values after training when we use

neuron-specific modulation, our results imply that one can improve performance if

these neurons are constrained to have the same gain value during training.

In Fig. 4.1c, we show mean results when training independently on 5 different

target outputs (note that the vertical axis scale is logarithmic in Fig. 4.1b and lin-

ear in Fig. 4.1c). (We use different specialised groups for each of the 5 targets.)

We find that 20 random groups perform similarly to neuron-specific modulation

and 20 specialised groups substantially outperform both neuron-specific modula-

tion and 20 random groups. Importantly, in all of the simulations that we show in

Fig. 4.1, for a given number of groups, specialised groupings always outperform

random groupings over the range of training iterations that we used. Therefore,

because we generate specialised groups by applying k-means clustering to 10

gain patterns that correspond to the minimum error on 10 independent training

sessions using neuron-specific modulation, the improvement in performance from

using such groupings implies that there are some important shared characteristics

among such a set of 10 previously learned gain patterns.

4.3 Learning multiple movements using a fixed grouping

It is likely unrealistic that the brain can reorganise its modulatory synaptic inputs

onto motor cortex in order to execute different movements. Therefore, a given

modulatory grouping should perform well for multiple movements. In this section,

we examine the possibility of using a fixed grouping when learning multiple different

movements.

80

b c d

0 5 10 15

10-1

100

E
rr

or

20 (specialised)
Neuron-specific

1020
Spec. across
all 5 movs.

Spec. for
each mov.

1 2 3 4 5

Movement index

1

2

3

4

5

R
el

at
iv

e
pe

rf
or

m
an

ce
 to

 n
eu

ro
n-

sp
ec

ifi
c

m
od

.

20 (specialised)
20 (random)
Neuron-specific

0 5 10 15

No. of iterations (103) No. of iterations (103)

10-1

100

E
rr

or

a 1020200
Random
Specialised

1 2 3 4 5
No. of movements

0.02

0.06

0.1

E
rr

or

Figure 4.2: Learning multiple target movements using a fixed grouping. a, Mean mini-

mum errors after training when we use the same grouping for learning different numbers

of movements. (See Appendix 4.A.1 for further details.) b, Relative improvement in per-

formance compared with neuron-specific modulation for each of 5 movements when using

specialised groups shared across all (squares) or for each (circles) of the 5 movements us-

ing either 10 (blue) or 20 (black) groups. A value of 2 implies that the error is 2 times smaller

after training compared to neuron-specific modulation. We indicate the performance of

neuron-specific modulation using the red line. c, Mean error over 10 training sessions

(where shading indicates one standard deviation) when learning 5 movements using either

20 random groups, neuron-specific modulation, or 20 specialised groups shared across all

5 movements. d, Mean error over 10 training sessions when learning 10 novel movements

using the specialised grouping (with 20 groups) shared across the 5 previously trained

movements from panel (c).

We first note that using random groups or neuron-specific modulation do not (on

average) yield different performances when learning multiple different movements.

However, when we create specialised groupings for learning multiple movements

(see Appendix 4.A.1 for further details), performance can degrade as you increase

the number of movements (see the blue points in Fig. 4.2a). However, we find that

a specialised grouping consisting of 20 groups can achieve a consistently good

performance when learning any number of up to 5 different movements (see the

black points in Fig. 4.2a).

For the 5 target movements that we used in Fig. 4.2a, we plot the improvement

in performance (see Fig. 4.2b) compared with neuron-specific modulation (see the

red line) for each target movement when using specialised groupings either shared

81

across all (squares) 5 movements or for each (circles) of the 5 movements. We

find that target movement index 5 (see the far right data points in Fig. 4.2b), yields

the best improvement in performance compared with the other 4 movements for

each grouping scenario. Additionally, using the specialised grouping for only tar-

get movement index 5, yields an error over five times smaller than neuron-specific

modulation when we use 20 groups (see the black circle for movement index 5 in

Fig. 4.2b). For movement index 2, performance is hardly improvement compared

with neuron-specific modulation, even when we use 20 specialised groups for only

movement index 2. In general, we find that using a specialised grouping of 10

groups shared across all 5 movements (see the blue squares) produces the small-

est increase in performance compared with the other scenarios, no matter which

movement one learns. In contrast, using a specialised grouping of 20 groups that

is specific to each movement (see the black circles) tends to produce the largest

increase in performance, no matter which movement one learns.

In Fig. 4.2c, we plot the mean error during training when using a specialised

grouping of 20 groups shared across all 5 movements (e.g., the minimum of the

solid black curve in Fig. 4.2c corresponds to the black data point on the far right in

Fig. 4.2a). We also use this specialised grouping to learn 10 hitherto-untrained

movements (see Fig. 4.2d), and we achieve a similar performance to neuron-

specific modulation.

These results suggest that one does not need to independently modulate each

neuron’s gain to learn target movements effectively. Using 20 random groups

in a network of 200 neurons (i.e., 10 % of the number of free parameters com-

pared with using neuron-specific modulation), yields a similar learning performance

to neuron-specific modulation. Moreover, we can find (albeit crudely; see Sec-

tion 4.1.1), specialised groups that substantially outperform neuron-specific modu-

lation when learning multiple different movements. It would be interesting to under-

stand whether one can find even more effective ‘specialised groupings’ for learn-

82

ing target movements and whether the brain employs mechanisms for constructing

such modulatory groups.

4.4 Effects of network size when learning with random groups

We now examine how network size (i.e., the number of neurons), affects learning

performance when using group-based modulation. We only use random groups

for all subsequent simulations in this chapter. For our simulations in this section,

we generate 5 different target outputs and run 10 independent training sessions for

each target. We consider various different numbers of random groups for networks

with N = 100, N = 200, and N = 400 neurons. We fit the readout weights so that

each scenario generates the same network output when all gains are set to 1.

We observe that increasing the number of independently modulated groups

yields smaller errors (on average over multiple independent training sessions and

over different target movements) after training (see Fig. 4.3a). This is also typi-

cally accompanied by a smaller variance in errors. In line with our observations in

Fig. 4.1, we find that with an increasing number of modulatory groups, more train-

ing iterations are required to achieve the typically smaller error associated with a

larger number of modulatory groups (see the red box plots in Fig. 4.3a).

In Fig. 4.3b, we compare the learning performance for the 5 different targets

and the 3 networks. The relative sizes of the errors for the 5 movements after train-

ing appear to be unrelated to the errors before training for any number of groups.

That is, different movements appear to exhibit different learning performance re-

gardless of the error before training. For example, the movement coloured in grey

in Fig. 4.3b has the smallest error both before and after training when using up to 3

modulatory groups. However, increasing the number of modulatory groups above

3 yields little improvement in performance for this movement compared with the

other movements. In Fig. 4.3c, we show that all 3 networks yield a similar learning

performance for any number of random groups up to and including neuron-specific

83

E
M

G
E

M
G

d

100 ms

TargetBefore training After training

N = 400 neurons; 10 groups

N = 400 neurons; 20 groups

a

0

5

10

15

0

5

10

15

0

5

10

15

1 2 3 4 5 6 7 8 9 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

200 1 2 3 4 5 6 7 8 9 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

4001 2 3 4 5 6 7 8 9 10 15 20

E
rr

or

0

0.2

0.4

0.6

0.8

1

1.2

100

Number of groups Number of groupsNumber of groups

N = 200 N = 400N = 100

b c

2 4 6 8 10 15 20 N
0

0.2

0.4

0.6

0.8

1

N = 100
N = 200
N = 400

2.3

E
rr

or

Number of groups

Error before training

Network size:

1 3 5 7 91 3 5 7 92 4 6 8 10 15 20 N
0

0

1

2

3

4

E
rr

or

Number of groups

Errors
before
learning

0.2
0.4
0.6
0.8

1
1.2
1.4

N
um

ber of iters. (10
3)

Figure 4.3: Effects of network size when learning with group-based gain modulation. a,

Box plots (in blue) of the minimum error after training on 5 different target movements for

different numbers of random groups with networks of 100, 200, and 400 neurons. We also

include box plots (in red) for the minimum number of training iterations required before

the error is within 1 % of the minimum error. We use Tukey style for the whiskers in the

box plots. b, The curves give the mean error over 10 training sessions and across the 3

networks for each of the 5 target movements. The circles represent the mean error for

each network, and the different colours indicate each of the 5 different targets (e.g., for a

given number of groups, there are three circles in each of five different colours). (The N on

the horizontal axis indicates neuron-specific modulation.) c, Mean minimum errors across

all 5 targets for each network versus the number of modulatory groups. (We use the same

data to generate the plots in panels (a)–(c)) d, Outputs for all 5 targets from the trial that

produces the median error for the 400-neuron network for the cases of 10 and 20 groups.

modulation. Performance depends much more on the number of groups than on

the number of neurons per group. We also find that there is only a small improve-

ment in performance for all 3 networks when using more than approximately 10

modulatory groups. That is, regardless of network size, the error saturates to a

similar value when we use a large number of modulatory groups.

84

a

b

10 20 40 N

E
rr

or

0

0.2

0.4

0.6

0.8

2

Number of groups
10 20 40 N

3

10 20 40 N

4

0 15 30 45 60

E
rr

or
E

M
G

0.1
0.2
0.3
0.4

1
2
3

2.5 3.5 4.5
0.3

0.5

0.7

0 15 30 45 60 0 15 30 45 60

Number of readout units

N = 100
N = 200
N = 400

Network size:

0

100 ms

TargetBefore training After training

Number of iterations (103)

a.u.

Figure 4.4: Effects of increasing the number of readout units. a, (Top) Mean minimum

error as a function of the number of random groups when learning each of (left) 2, (centre)

3, and (right) 4 readouts for the same networks that we used in Fig. 4.3 (i.e., networks

of 100, 200, and 400 neurons). (The N on the horizontal axis indicates neuron-specific

modulation.) (Bottom) The corresponding mean errors during training for the case of 40

groups. The inset is a magnification of the initial training period for the case of 2 readout

units. b, Outputs producing the median error for the case of 4 readout units using 40 groups

in the 400-neuron network. (See Appendix 4.A.2 for further details.)

4.5 Increasing task complexity

So far in this chapter, we have used only 1 readout unit. It could be the case that

the results that we have obtained so far do not hold when we increase the number

of readout units (i.e., increasing the task complexity). In this section, we examine

the effects of increasing the number of readout units.

We find that when the task involves two or more readout units, larger networks

do learn better, and achieving a good performance necessitates using a larger

number of independently modulated groups (see Fig. 4.4 and Appendix 4.A.2).

For example, when we use 4 readout units, good performance requires approxi-

85

mately 40 or more modulatory groups (see the top right panel of Fig. 4.4a and also

Fig. 4.4b). As we increase the number of readout units, we observe an increase

in the relative improvement in performance from using more independently mod-

ulated groups (see the top row in Fig. 4.4a). We also find that smaller networks

typically learn faster (see the inset in the bottom left panel of Fig. 4.4a), but they

ultimately exhibit poorer performance (see the light purple curves in Fig. 4.4a).

Therefore, there is a trade-off between network size, number of groups, and task

complexity (i.e., the number of readout units).

4.6 Conclusions and discussion

Realistic mechanisms that can cause neuronal gains to change will likely only

be able to affect neuronal gains in a coarse (i.e., non neuron-specific) manner.

For example, synaptic inputs from other brain regions could affect neuronal gains

(Chance et al., 2002), and the experimentally observed diffuse neuromodulatory

projections onto primary motor cortex (Hosp et al., 2011; Huntley et al., 1992;

Molina-Luna et al., 2009) can change neuronal gains (Thurley et al., 2008). Thus,

it may be the case that proximal neurons will be affected in similar ways. Therefore,

it is important to understand the effectiveness of modulating groups of neurons

rather than each neuron independently.

We found that 20 modulatory groups chosen uniformly at random (see Sec-

tion 4.1.1) yields a similar performance to neuron-specific control in a 200-neuron

network when we use 1 readout unit. We also found that performance can be

improved substantially if, instead of grouping neurons uniformly at random, we

choose groups based on previous training sessions by using ‘specialised group-

ings’ (see Section 4.1.1). Importantly, there exist specialised groupings that per-

form similarly across multiple different movements. Such specialised groupings

acquired from learning one set of movements can also perform well on novel move-

ments.

86

Our results from Figs. 4.1 and 4.2 were based on using a 200-neuron net-

work. However, it is important to understand how our results are affected when we

change the network size. Interestingly, we found that network size hardly affects

learning performance for a single readout unit and good performance is improved

only slightly if one uses more than approximately 10 random groups. However,

when the task involves more than one readout unit, more independently modu-

lated groups are required to achieve good performance and larger networks do

yield better performance.

To create specialised groupings, we applied k-means clustering to gain pat-

terns that correspond to the minimum error when training using neuron-specific

modulation (see Section 4.1.1). Although this is rather crude, we found that spe-

cialised groups substantially improve performance compared with neuron-specific

modulation. It may be interesting to obtain groups using alternative approaches.

For example, one could obtain groups by applying k-means clustering to gain pat-

terns obtained over the entire course of training using neuron-specific modulation.

Therefore, neurons placed in the same group may tend to have similar gain values

over the entire course of training. We also tested the effects of creating groups

by applying k-means clustering to either the neuronal firing rates or to the read-

out weights, but we found no improvement in performance compared with using

random groups (not shown).

Another interesting area of future research may be to investigate the difference

between the time series of gain values obtained during the course of training when

using specialised groups compared with neuron-specific modulation. For example,

the gain pattern corresponding to the minimum error during training when using

neuron-specific modulation is a local minimum in the neuronal gain ‘error land-

scape’ (or ‘loss landscape’) (Li et al., 2018; Rakitianskaia et al., 2016). We showed

that when we constrain training by using specialised groups corresponding to this

gain pattern, performance can be improved. But an important questions is: Do

87

we still find a similar local minimum when using the specialised groupings? We

know the same local minimum likely still exists, but it is unclear whether one can

reach it when we use the specialised grouping. Therefore, it would be interesting

to investigate how the error landscape changes when using grouped modulation.

In the remaining chapters, we use group-based gain modulation for all of our

simulations and we use a 400-neuron network with 40 random modulatory groups.

4.A Supplementary simulation details

4.A.1 Details for Fig. 4.2

We generate 5 different target outputs and run 10 independent training sessions

for each target. For the random groupings (see Section 4.1.1), we use different

independently generated random groups for each simulation. For the specialised

groups (see Section 4.1.1), for a given number of groups, we use the same group-

ing in all simulations. We plot the results of using 10 or 20 groups with either

random or specialised groups in Fig. 4.2. We use 18, 000 training iterations for all

simulations.

We now explain how we determine specialised groups that are shared by multi-

ple movements (i.e., we use the same grouping for learning multiple movements).

We apply k-means clustering (where k is the desired number of groups) across all

of the gain patterns that we obtain using neuron-specific modulation for each of the

movements. That is, we apply k-means clustering to a matrix of size N × (10 · q),
where N is the number of neurons and q is the number of movements (and, equiv-

alently, the number of gain patterns).

4.A.2 Details for Fig. 4.4

When we use multiple readout units, we generate 10 different ‘initial’ and target

outputs for each readout unit. For example, for 2 readout units, we generate 10

88

different initial and target outputs for each of units 1 and 2. We fit readout weights

so that with all gains set to 1, the network generates the initial output for each

readout unit. We run independent training sessions for these 10 sets of target

outputs and calculate mean errors across the 10 training sessions. For a given

number of readout units, we use the same sets of initial and target outputs for all 3

network sizes and each number of random modulatory groups. We thus fit readout

weights so that each scenario generates the same output with all gains set to 1.

(The readout weights remain fixed throughout training.) We use 60, 000 (instead of

18, 000) training iterations to ensure error saturation.

89

CHAPTER 5

Learned gain patterns can provide motor primitives for

novel movements

In Chapters 3 and 4, we trained networks to generate target outputs by iteratively

changing neuronal gains using our learning rule in Eqn. (3.5). However, in addition

to learning movements relatively slowly over time, we know that the brain can also

rapidly generate new movements to a reasonable degree of accuracy (at least

if the movement corresponds to neural activity that is relatively similar to neural

activity associated with previously learned movements (Golub et al., 2018; Sadtler

et al., 2014)). As an example, consider an inexperienced darts player who has

spent several hours practising throwing at two different numbers on the dart board,

say the numbers 10 and 20. If the player now decides to throw for the number 8

(which they have not attempted yet), we know that the brain can use information

gained from throwing at the numbers 10 and 20 to update so-called ‘internal models’

(Wolpert and Flanagan, 2001; Wolpert et al., 1998) in the motor system to try and

throw to the number 8.

It has been suggested that one mechanism by which the brain generates move-

90

ments is by combining previously acquired movement building blocks (or ‘motor

primitives’) (Giszter, 2015; Thoroughman and Shadmehr, 2000). Utilising such

an approach for movement control can allow motor systems to rapidly generate

movements, and there is considerable evidence that brains use motor primitives at

various different levels of the motor system (for example, evidence for motor prim-

itives has been found in muscles, spinal motoneurons, and cortical motor circuits

(Bizzi and Cheung, 2013; Flash and Hochner, 2005; Giszter, 2015)).

In principle, in our model, it is possible to independently learn numerous gain

patterns that correspond to many different movements, supporting the possibility

of a repertoire (which we call a ‘library’) of modulation states that a network can

use, in combination, to produce a large variety of outputs. In this short chapter, we

examine whether a learned library of gain patterns can act as motor primitives so

that one can ‘intuit’ new gain patterns for new desired movements as combinations

of previously acquired gain patterns.

We find that we can accurately generate desired target movements by linearly

combining gain patterns from a previously learned library. This may seem unintu-

itive, but we show that one can understand this result mathematically by calculating

power-series expansions of the solution of the linearised neuronal dynamics. We

also find that increasing the number of elements in the library reduces errors in

network outputs. Importantly, when we use more strongly nonlinear neuronal dy-

namics by reducing the baseline firing rate to r0 = 5 Hz, it is still possible to learn

new movements by using combinations of existing gain patterns. The results that

we present in this chapter form part of an article that has been accepted at Nature

Neuroscience: Jake P. Stroud, Mason A. Porter, Guillaume Hennequin, and Tim P.

Vogels, ‘Motor primitives in space and time via targeted gain modulation in cortical

networks’.

91

5.1 Methods

For the simulations in this chapter, we use the same setup that we used in Chap-

ters 3 and 4. Specifically, Eqn. (3.1) governs the neuronal dynamics, we use the

gain function in Eqn. (3.2) (with r0 = 20 Hz unless we state otherwise), and we gen-

erate the synaptic weight matrixW in line with Hennequin et al. (2014). That is, we

use stability-optimised circuits (see Section 1.2.4). We use a 400-neuron network

with 40 random modulatory groups (see Section 4.1.1 for how we generate such

groups) for all of our simulations in this chapter. For further modelling details, see

Section 3.2.

5.1.1 Creating libraries of learned movements

To create libraries of learned movements in our model, we train a 400-neuron net-

work with 40 random groups (see Section 4.1.1) on each of 100 different target

movements independently using our learning rule Eqn. (3.5) (see Section 3.2.2

for a description of how we create target movements). In other words, this gen-

erates 100 different gain patterns, with one for each movement. For library sizes

of l ∈ {1, 2, . . . , 50}, we choose 100 samples of l movements (from the learned

gain patterns and their associated outputs) uniformly at random without replace-

ment for each l. We then fit the set of l movements in each of the 100 sample

libraries using least-squares regression for each of 100 hitherto-untrained novel

target movements (see Fig. 5.1 for an illustration). We constrain the fitting coef-

ficients cj from the least-squares regression by requiring that cj ≥ 0 for all j and∑l
j=1 cj = 1. That is, we consider convex combinations of the coefficients cj. We

calculate the fit error (i.e., the error between the fit and the target), the output error

(i.e., the error between the output and the target), and the error between the fit and

the output for each of the 100 novel target movements, each of the 100 library sam-

ples, and each l (see Appendix D for how we calculate errors). See Appendix 5.A

92

. . .
. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .

. . .

G
ai

n
lib

ra
ry

. . .

Target
Fit to target

Output. . .

. . .

F(g1)

F(gl)

c1

cl

F(c1g1 + ... + clgl)

c1F(g1) + ... + cl F(gl)

g1

g2

g3

gl

Initial

cond.

Cortical network

Figure 5.1: Schematic of a learned library of gain patterns (g1, . . . , gl, which we colour from

purple to blue) and a combination c1F (g1)+ . . .+ clF (gl) of their outputs (which we denote

by F) that we fit (red dashed curve) to a novel target (grey curve). (Upper right) The output

F (c1g1 + . . .+ clgl) (which we show in orange) of the same combination of corresponding

gain patterns also closely resembles the target (see Section 5.2). (See the main text for

further details.)

for further simulation details.

5.2 Learned gain patterns can be combined to generate new

desired movements

In Fig. 5.2a, we plot the distribution of gains over all 100 trained gain patterns. We

find that the distribution resembles a normal distribution (blue curve) with a similar

mean and variance as those that we found in Fig. 3.3c. This implies that when

learning different movements, but where the movements are taken from the same

generating process (see Section 3.2.2), the distribution of neuronal gains is similar

for the different movements (also see Fig. 5.4 in Appendix 5.B). Interestingly, when

we create gain patterns by sampling uniformly at random from the distribution that

we show in Fig. 5.2a, we find that the network outputs that result from these gain

patterns are substantially more homogeneous than the original trained movements

93

E
M

G

100 ms

E
M

G

100 ms

b c
D

en
si

ty
 (

a.
u.

)

Gain

Simulation
results

a

0 0.5 1 1.5 2
0

20

40

60

80

100 N (1, 0.182)

a.u.

Figure 5.2: a, The resulting distribution of gains from training independently on each of

100 target movements (see Section 5.1.1). As a comparison, in Fig. 3.3 we obtained a

standard deviation of σ ≈ 0.157. b, Each output from the 100 trained gain patterns. c,

Outputs of 100 randomly-generated gain patterns that are creating by sampling uniformly

at random from the distribution in panel (a).

and likely would not constitute a good library for movement generation (compare

panels (b) and (c) in Fig. 5.2). Therefore, this implies that the exact association

between the gain values and the respective groups of neurons they control is im-

portant for gain patterns to act as a library for movement generation, not merely

the distribution of the gain values.

Following the method that we describe in Section 5.1 and Appendix 5.A, we

find that we can accurately generate new movements from convex combinations

of previously learned gain patterns (see Fig. 5.3). Performance is limited by the

accuracy with which one can construct target movements as linear combinations

of existing primitives. (See Fig. 5.3a and the correlations between output errors and

fit errors in Fig. 5.3b.) Increasing the number of elements in the movement library

reduces the error between a target movement and its fit, which is also reflected

in a progressively better match between the target and the network output (see

Figs. 5.3b,c). Importantly, the difference between network outputs and fits remains

small for all tested numbers of library elements (see the blue curve in Fig. 5.3c).

In Fig. 5.3, we show results for library sizes up to l = 20. However, we find

that there is only a small change in the errors between l = 20 and l = 50 numbers

of library elements (see Fig. 5.5a in Appendix 5.B). Interestingly, for more than

94

approximately 20 library elements, the error between the output and the target

(i.e., the orange curve in Fig. 5.5a in Appendix 5.B), appears to be composed in

approximately equal proportion of fit errors and errors between the output and the

fit.

We also find that the distribution of errors for each library size resemble Gaus-

sian distributions (see Fig. 5.5b in Appendix 5.B). Therefore, our using the median

error (or 50th-smallest error) in Fig. 5.3, appears to be a reasonable description of

the data. We also note that although it is difficult to discern the exact errors for

each number l of library elements in Fig. 5.3b, we find a strong positive correla-

tion between fit and output errors for all tested numbers of library elements (see

Fig. 5.5f in Appendix 5.B). Additionally, we obtain qualitatively similar results if we

average over the 100 randomly-generated combinations of l library elements com-

pared with if we instead average over the 100 novel target movements (compare

Fig. 5.5e in Appendix 5.B with Fig. 5.3b; also see Appendix 5.A).

We also examined the possibility of using gain patterns as motor primitives with

more strongly nonlinear dynamics by setting the baseline firing rate to r0 = 5 Hz

(see Section 3.7 for a discussion of the effects of using a baseline rate of r0 = 5 Hz).

Importantly, it is still possible to learn new movements by using combinations of

existing gain patterns (see Fig. 5.6 in Appendix 5.B). As before, performance is

limited by the accuracy with which one can construct target movements as linear

combinations of existing primitives. (See the correlations between network output

errors and fit errors in Fig. 5.6b in Appendix 5.B.) We obtain very similar results to

those we obtained for the case of r0 = 20 Hz. Errors in network output decrease

on average with increasing numbers of gain patterns in the movement library (see

the orange curve in Fig. 5.6c in Appendix 5.B), and the difference between the net-

work output and corresponding fit remains small for all tested numbers of library

elements (see the blue curve in Fig. 5.6c in Appendix 5.B). However, reducing r0

to sufficiently small values (that are below 5 Hz) does eventually lead to a deterio-

95

100 ms

TargetFit Output

l = 2 l = 4

l = 8 l = 16

a
l

1 20

c
Output versus target
Fit versus target
Output versus fit

0 5 10 15 20

No. of library elements (l)

0

1

0.5

1.5

2

3

E
rr

or

0 0.2 0.4 0.6 0.8 1

Output error

0

0.2

0.4

0.6

0.8

1

F
it

er
ro

r

b

E
M

G
E

M
G

Figure 5.3: a, Example target, fit, and output (grey, red dashed, and orange curves, respec-

tively) producing the 50th-smallest output error over 100 randomly-generated combinations

(see Section 5.1.1 for a description of the generation process) of l library elements using

l = 2, l = 4, l = 8, and l = 16. b, Fit error versus the output error for 100 randomly-

generated combinations of l library elements for l = 1, . . . , 20. Each point represents the

50th-smallest error between the output and the fit across 100 novel target movements. We

show the identity line in grey. c, Median errors of the 100 randomly-generated combina-

tions of l library elements versus the number of library elements. We use a 400-neuron

network with 40 random modulatory groups for these simulations (see Section 5.1). (See

Appendix 5.A for further details.)

ration in the relationship between gain patterns and their corresponding outputs.

5.3 Analysis of linear combinations of gain patterns and their

associated neuronal dynamics

So far in this chapter, we have illustrated that there is a consistent mapping be-

tween learned gain patterns and their outputs. Specifically, we illustrated that for a

library of l gain patterns (g1, . . . , gl), a convex combination c1F (g1)+. . .+clF (gl) (so

cj ≥ 0 for all j and
∑l

j=1 cj = 1) of their corresponding outputs (which we denote by

F) approximates the output F (c1g1 +. . .+clgl) that we obtain by combining the gain

patterns with the same coefficients (see Figs. 5.1 and 5.3). Note that the subscript

index j denotes the library element j and is not a neuron index. We now provide

some mathematical intuition of this approximation by studying linearised solutions

96

of the neuronal dynamics. Because the network output is a linear combination of

the neuronal firing rates, we study convex combinations of neuronal activity x di-

rectly; this then guarantees that the same result holds for convex combinations of

network outputs.

For a convex combination (i.e., a weighted mean) of l vectors or matrices ψ

with weights cj, it is convenient to use the following notation:

C
[
ψ̃
]

=
l∑

j=1

cjψ , (5.1)

where the tilde in the square brackets is a reminder that we are summing over

the index of the associated library terms. When we employ matrix multiplication

in the following mathematical analysis, it is convenient to represent a gain pattern

gj ∈ RN using the matrix notation Gj = diag(gj) (that is, the neuronal gains are

elements along the diagonal ofGj ∈ RN×N , all other elements are 0, and the index

j denotes library element j). Using this notation, the solution xj(t) ∈ RN of the

linearised dynamics of Eqn. (3.1) around x = 0 is given by

xj(t) = e
t
τ

(WGj−I)x0 , (5.2)

under the assumption that there are N distinct eigenvectors for the matrixWGj−I
and that we are away from any bifurcations. Let

u(t) = e
t
τ (W C[G̃]−I)x0 (5.3)

denote the neuronal activity that results from a convex combination C
[
G̃
]

of gain

patterns. We need to show that u(t) is approximately the same as the convex

combination of the individual neuronal dynamics xj(t) with the same coefficients

cj. That is, we need to show that the difference

∆(t) = u(t)− C [x̃(t)] (5.4)

is small with respect to the magnitude of the neuronal activity. We first note that

97

d∆
dt

∣∣
t=0

= 0, which we prove as follows:

d

dt
u(t)

∣∣∣∣
t=0

=
1

τ

(
W C

[
G̃
]
− I

)
x0 (5.5)

=
1

τ
C
[
WG̃− I

]
x0

=
d

dt
C [x̃(t)]

∣∣∣∣
t=0

,

where we used the fact that
∑l

j=1 cj = 1 to go from the first to the second line, and

we note that the matrices W and I do not depend on the gain patterns.

To see whether we can also expect ∆(t) to be small for t > 0, it is useful to

consider the power-series expansion of the matrix exponentials on the right-hand

side of Eqn. (5.4):

C [x̃(t)] = C

(∞∑
m=0

(WG̃− I)m

m!

) t
τ

x0

 , (5.6)

u(t) =

(
∞∑
m=0

(
W C

[
G̃
]
− I

)m
m!

) t
τ

x0 . (5.7)

We observe in numerical simulations (not shown) that power-series expansions

of this form are accurate descriptions of the associated neuronal dynamics up to

second order in m. We therefore truncate to m = 2, and we evaluate the difference

of Eqns. (5.6) and (5.7):

∆(t) =

(
1

2

) t
τ

(
C
[(

(WG̃)2 + I
) t
τ

]
−
((
W C

[
G̃
])2

+ I

) t
τ

)
x0 . (5.8)

We need to check if the right-hand side of Eqn. (5.8) is small compared to the

neuronal dynamics (i.e., compared to Eqn. (5.6)). One way to check if this holds at

certain times t is to substitute values of t into Eqns. (5.8) and (5.6) and calculate

the ratio of the norms of these two expressions. Setting t = τ — at t = τ = 200 ms,

the neuronal dynamics are close having reached their maximum amplitude (see

98

Fig. 1.7b) — yields

‖∆(t) |t=τ ‖
‖C [x̃(t) |t=τ] ‖

≈

∥∥∥∥(C [(WG̃
)2

+ I

]
−
(
W C

[
G̃
])2

− I
)
x0

∥∥∥∥∥∥∥∥(C [(WG̃
)2

+ I

])
x0

∥∥∥∥
=

∥∥∥∥(C [(WG̃
)2
]
−
(
C
[
WG̃

])2
)
x0

∥∥∥∥∥∥∥∥(C [(WG̃
)2
]

+ I

)
x0

∥∥∥∥ . (5.9)

We now study the magnitude of the numerator and the denominator of Eqn. (5.9)

and show that the ratio of the former to the latter is small. Both the numerator and

the denominator scale approximately in linear proportion to the norm of the product

of W 2 and x0. (The identity matrix in the denominator is small compared to W 2.)

The main difference between the numerator and denominator is their dependen-

cies on the gain patternsGj. The numerator scales approximately proportionally to

a ‘weighted variance’ of the gain patterns, whereas the denominator scales approx-

imately proportionally to a weighted mean of the squared gain patterns. Because

our learned gain patterns are typically narrowly distributed, with a mean of 1 and

approximate standard deviation of 0.17 (see Fig. 5.4 in Appendix 5.B), this ratio is

small (on the order of 10−3) and actually decreases with an increasing library size.

Numerically, we confirm that the normalised error in Eqn. (5.9) is indeed small,

which also corroborates the results of this chapter.

Finally, although we restricted our discussion above to a linear gain function,

we note that our numerical simulations suggest that Eqn. (5.4) is also small for the

nonlinear gain function of Eqn. (3.2) (see Figs. 5.3, 5.5, and 5.6) that we used in

all our simulations.

5.4 Conclusions and discussion

It is known that the brain can rapidly generate certain ‘new’ movements (Bizzi and

Cheung, 2013; Giszter, 2015; Golub et al., 2018; Sadtler et al., 2014; Wolpert

99

et al., 1998). One way of achieving this is to combine previously learned movement

building blocks (or motor primitives) (Bizzi and Cheung, 2013; Flash and Hochner,

2005; Giszter, 2015; Thoroughman and Shadmehr, 2000). In line with this per-

spective, in our model, we found that previously acquired gain patterns can be

linearly combined in a predictable manner to generate new movements. Network

output errors (on average) decrease as the number of elements in the movement

library increases and errors between actual and expected network outputs remain

low for all tested numbers of library elements. We provided some mathematical

intuition for these results by calculating power-series expansions of the solution of

the linearised neuronal dynamics. We found that if the variance of the gain pat-

terns in the movement library is small compared with the mean of the squared gain

patterns, then errors between actual and expected network outputs are expected

to be small. Empirically, we found that the above-mentioned ratio of the variance

to the mean of the gain patterns is satisfied in our simulations (for example, see

Fig. 5.4 in Appendix 5.B). We also found that when we use more strongly nonlinear

neuronal dynamics by reducing the baseline firing rate to r0 = 5 Hz (see Fig. 3.6),

we obtain very similar results to those obtained for the case of r0 = 20 Hz.

Although the idea of using motor primitives to facilitate rapid acquisition of new

movements is well established (Bizzi and Cheung, 2013; Flash and Hochner, 2005;

Giszter, 2015; Thoroughman and Shadmehr, 2000), our approach proposes the

first (to our knowledge) circuit-level mechanism for achieving this objective. In ad-

dition to neuromodulatory systems (Hernandez-Lopez et al., 2000; Molina-Luna

et al., 2009; Thurley et al., 2008; Wei et al., 2014), the cerebellum is a natural

candidate structure to coordinate such motor primitives (Thoroughman and Shad-

mehr, 2000; Wolpert et al., 1998), as it is known to project to M1 and to play a

critical role in error-based motor learning (Spampinato et al., 2017; Thoroughman

and Shadmehr, 2000).

To test whether a library of gain patterns can be used to generate novel move-

100

ments, we created both the movements in the library and the novel target move-

ments using the same generating process (see Section 5.1.1). It would be interest-

ing to understand how effective a library of gain patterns can be at generating novel

movements when they are generated in a different way (for example, by changing

σ in Eqn. (3.3), one can change the duration of the novel target movements; also

see Chapter 6). One could also create a library of gain patterns that correspond to

many different movement shapes (by changing ` in Eqn. (3.3)) and durations (by

changing σ in Eqn. (3.3)). (See Section 6.6 for a discussion related to this.) One

might expect that such a comprehensive movement library may generate a large

variety of novel movements, however, the accuracy by which it can generate each

movement may be small.

In addition to the above discussion, it is unclear what a ‘novel’ movement really

is. Realistically, ‘novel’ movements will always bear some resemblance to pre-

viously performed (or learned) movements. The use of brain-machine interfaces

have allowed researchers glimpses into what types of movements are difficult to

generate on short time scales (Carmena et al., 2003; Golub et al., 2018; Sadtler

et al., 2014). It has been observed that macaque monkeys can rapidly gener-

ate new movements if the new movement corresponds to neural activity that is

relatively similar to neural activity associated with previously learned movements

(Golub et al., 2018; Sadtler et al., 2014). Therefore, it appears that the brain’s

ability to rapidly generate new movements requires that the new movements are

relatively similar to previously learned movements (Sadtler et al., 2014), which is

in line with the approach that we used in this chapter.

5.A Supplementary simulation details

In this appendix, we provide more details on the simulations that we performed in

this chapter.

In Fig. 5.3a, for an example target (and for l = 2, l = 4, l = 8, and l = 16), we

101

plot the output and fit that produce the 50th-smallest error between the output and

the target across the 100 randomly-generated libraries (see Section 5.1.1).

For each l and for each randomly-generated combination of library elements,

we order the 100 novel target movements based on the error between the output

and the fit, and we select the one that is the 50th smallest (i.e., close to the median

error). We then extract the output and fit errors for this target and repeat this

procedure for each of the 100 randomly-generated combinations of library elements

and for l = 1, . . . , 50. We plot these results in Figs. 5.3b and 5.5d. In Fig. 5.3, we

plot results for l ∈ {1, 2, . . . , 20}; in Fig. 5.5, we plot results for l ∈ {1, 2, . . . , 50}.
Observe that there is only a small change in the errors between l = 20 and l =

50. In 5.5b, we calculate the median error over the 100 target movements and

we plot the distribution of these median errors over the 100 randomly-generated

combinations of library elements for l = 5 and l = 20.

Additionally, for each l and for each of the 100 target movements, we order

the 100 combinations of library elements based on the error between the output

and the fit, and we select the one that is the 50th smallest. We then extract the

output and fit errors for this combination and repeat this procedure for each of the

100 target movements and for l = 1, . . . , 50. We plot these results in Fig. 5.5e.

This indicates that we obtain qualitatively similar results if we average over the 100

target movements or if we instead average over the 100 combinations of library

elements. In Figs. 5.3c and 5.5a, we first calculate the median error over the

100 target movements for each l and for each of the 100 combinations of library

elements. We then plot the median of these errors over the 100 combinations of

library elements for each l.

We also calculate the Pearson correlation coefficient between the output and

the fit errors for each l when taking the 50th-smallest error across the 100 novel

target movements (see 5.5f) or across the 100 randomly-generated samples (see

5.5g).

102

We also repeat these simulations using a baseline rate r0 = 5 Hz and we plot

the results of these simulations in Fig. 5.6. Therefore, the simulation details for

Figs. 5.3a–c also apply to Figs. 5.6a–c, and the simulation details for Figs. 5.5f–g

also apply to Figs. 5.6d–e.

103

5.B Supplementary figures

0

5

10
µ ≈ 1.05
σ ≈ 0.17

µ ≈ 0.94
σ ≈ 0.26

µ ≈ 1.01
σ ≈ 0.18

µ ≈ 0.94
σ ≈ 0.14

µ ≈ 0.98
σ ≈ 0.19

µ ≈ 0.99
σ ≈ 0.20

µ ≈ 1.00
σ ≈ 0.16

µ ≈ 1.04
σ ≈ 0.18

µ ≈ 0.99
σ ≈ 0.17

µ ≈ 1.02
σ ≈ 0.16

0 1 2
0

5

10

0 1 2 0 1 2 0 1 2 0 1 2

Neuronal gain

N
um

be
r

of
 g

ai
n

va
lu

es

Figure 5.4: We plot the distribution of gain values for 10 of the 100 trained gain patterns

that we use to generate movement libraries (see Section 5.1.1 for details of how we create

these libraries of gain patterns). We chose these 10 gain patterns uniformly at random.

We show the mean µ and standard deviation σ for each of the 10 gain patterns. We obtain

a mean (over the 100 gain patterns) standard deviation (σ) of approximately 0.177 and a

mean mean (µ) of approximately 0.996.

104

a b

c d e

f g

1 50

0 10 20 30 40 50
Number of library elements (l)

0

1

2

3

E
rr

or

0 1 2 3
Error

0

10

20

30

40

50

%
 o

f s
im

ul
at

io
ns

0 0.2 0.4 0.6
Error

0

10

20

30

%
 o

f s
im

ul
at

io
ns

0 10 20 30 40 50
Number of library elements (l)

Number of library elements (l) Number of library elements (l)

0

0.05

0.1

0.15

0.2

E
rr

or

0 5 10 15
Output error

0

5

10

15

F
it

er
ro

r

l

1 20

l

Output versus target

Fit versus target

Output versus fit

= 5l = 20l

0 0.2 0.4 0.6 0.8 1

Output error

0

0.2

0.4

0.6

0.8

1

F
it

er
ro

r

0 10 20 30 40 50

C
or

re
la

tio
n

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

C
or

re
la

tio
n

Output versus target

Fit versus target

Output versus fit

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.5: a, We show the same plot as in Fig. 5.3c, but for up to l = 50 library elements.

b, The distributions of errors across 100 different libraries for (left) l = 5 and (right) l = 20

(see the black rectangles in panel (a)). (Note the difference in horizontal-axis scales in

the two plots.) c, The error between the output and the fit from panel (a) using a different

vertical axis scale. d, The same plot as in Fig. 5.3b, but for l = 1, . . . , 50 and with extended

axes. Each point represents the 50th-smallest error between the output and the fit across

100 novel target movements. We show the identity line in grey. e, The same as in panel (d),

but each point represents the 50th-smallest error between the output and the fit across the

100 libraries for each of the 100 novel target movements. We plot these data in the square

[0, 1]×[0, 1] and for l = 1, . . . , 20. f, For the data in panel (d), we plot the Pearson correlation

coefficient between the output and the fit errors for each number of library elements (up to

l = 50). g, For the data in panel (e), we plot the Pearson correlation coefficient between the

output and the fit errors for each number of library elements (up to l = 50). (See Appendix

5.A for further details.)

105

a
l

1 20

b

d

c

e

E
M

G
E

M
G

0 0.2 0.4 0.6 0.8 1

Output error

0

0.2

0.4

0.6

0.8

1

F
it

er
ro

r

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

C
o
rr

.
co

e
ff
.

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

Number of library elements (l) Number of library elements (l)

100 ms

TargetFit Output

l = 2 l = 4

l = 8 l = 16

Output versus target
Fit versus target
Output versus fit

No. of library elements (l)
0 5 10 15 20

0

1

0.5

1.5

2
3

E
rr

or

Figure 5.6: Gain patterns as motor primitives with r0 = 5 Hz. a, Example target (grey),

fit (dashed red), and output (orange) that produces the 50th-smallest output error over 100

randomly-generated combinations of l library elements using l = 2, l = 4, l = 8, and

l = 16. b, Fit error versus the output error for 100 randomly-generated combinations of l

library elements for l = 1, . . . , 20. Each point represents the 50th-smallest error between

the output and the fit across 100 novel target movements. We show the identity line in grey.

c, Median errors of the 100 randomly-generated combinations of l library elements versus

the number of library elements. d, For the data in panel (b), we plot the Pearson correlation

coefficient between the output and the fit errors for each number of library elements (up to

l = 50). e, The same as panel (d), but for data corresponding to the 50th-smallest error

for each novel target movement, rather than for each randomly-generated combination of

library elements (up to l = 50) (see Appendix 5.A). Compare panels (d) and (e) of this

figure with panels (f) and (g) in Fig. 5.5.

106

CHAPTER 6

Gain modulation can control movement speed

In this chapter, we investigate whether changing neuronal gains in recurrent neu-

ronal networks can control the speed of movements. Given a network that pro-

duces an initial movement lasting approximately 0.5 s, we find that we can generate

the same movement shape, but lasting 5 times longer, by changing only neuronal

gains. We can also find two gain patterns so that linearly interpolating between

them generates the same movement shape at intermediate speeds. Thus, we can

smoothly control the speed of movements by linearly changing neuronal gains. We

can also obtain separate families of gain patterns that affect either only the shape

or only the speed of a movement, thereby enabling efficient and independent move-

ment control in space and time. Finally, we show that we can learn to combine an

existing library of gain patterns to generate new movement shapes while preserv-

ing movement speed control. In other words, we create a motor primitives library

of gain patterns for controlling movements in space and time. The results that we

present in this chapter form part of an article that has been accepted at Nature

Neuroscience: Jake P. Stroud, Mason A. Porter, Guillaume Hennequin, and Tim P.

Vogels, ‘Motor primitives in space and time via targeted gain modulation in cortical

107

networks’.

6.1 Introduction

Thus far in this thesis, we have demonstrated that simple (even coarse, group-

based) gain modulation enables control of network outputs of the same, fixed du-

ration (approximately 0.5 s; see Section 3.2.2). To control movements of different

durations, motor networks must be able to slow down or speed up muscle outputs

(i.e., change the duration of movements without affecting their shape). Several

recent studies have investigated potential mechanisms of how recurrent neuronal

networks can control the speed of network outputs (Hardy and Buonomano, 2018;

Laje and Buonomano, 2013; Rajan et al., 2016; Remington et al., 2018; Wang

et al., 2018). One possibility is that by scaling a tonic input to a recurrent neuronal

network (which has a pre-trained architecture), one can control the speed of net-

work outputs (Hardy et al., 2017; Remington et al., 2018; Wang et al., 2018). The

results of using such an approach to control movement speed appear to align with

experimental observations in medial frontal cortex; neurons in this region typically

display complex heterogeneous firing-rate activity that scales approximately tem-

porally when monkeys perform tasks that require speed-specific movements to be

produced (Remington et al., 2018; Wang et al., 2018). Such studies also suggest

that changes in the effective input–output gain (due to a tonic input) of neurons may

be important for controlling the speed of neuronal activity (Wang et al., 2018). Fur-

thermore, the neuromodulator dopamine, which can affect neuronal input–output

responses (Hernandez-Lopez et al., 2000; Thurley et al., 2008), appears to play a

fundamental role in how the brain encodes time (Soares et al., 2016). Therefore,

tonic inputs (which are similar to gain changes), or neuromodulatory inputs are

likely important for controlling the speed of neuronal activity.

In our model, we have already shown that increasing the gain of all neurons

identically in a recurrent neuronal network, extends the duration of neuronal fir-

108

ing rates (although the frequency of oscillation of neuronal activity also increases;

see Fig. 2.4b). Alternatively, it is conceivable that by changing neuronal gains in-

dependently, we can change the speed of network outputs without affecting their

shape.

In this chapter, we investigate whether neuronal gain modulation in recurrent

neuronal networks allows control of the speed of intended movements. In Sec-

tion 6.3.1, we investigate the possibility of generating the same movement shape,

but lasting 5 times longer, by changing only neuronal gains using our learning rule

in Eqn. (3.5). We then use back-propagation to train the neuronal gains (see Sec-

tion 6.3.2) and we show that we can learn a single gain pattern that generates a

slow-variant of multiple different movements associated with different initial condi-

tions (see Section 6.3.3). In Section 6.4, we demonstrate that we can smoothly

control the speed of multiple movements by simply linearly interpolating between

two learned gain patterns. We then show that we can separately change move-

ment speed while preserving movement shape (see Section 6.5), and such an

approach allows one to linearly combine previously learned gain patterns to gen-

erate new movement shapes while maintaining movement speed control (see Sec-

tion 6.6). (The simulations for Figs. 6.1c, 6.2, 6.3, 6.4, and 6.6b,d,f were performed

in collaboration with Guillaume Hennequin.)

6.2 Methods

Our model setup in this chapter is similar to the one that we used in Chapters 3–5.

For the sake of convenience, we describe our model below.

6.2.1 Neuronal dynamics

We use recurrent neuronal networks of N = 2M neurons (of which M are excita-

tory and M are inhibitory) for which the neuronal activity x(t) = (x1(t), . . . , xN(t))ᵀ

109

evolves according to the dynamical system

τ
dx(t)

dt
= −x(t) +W f(x(t); g) , (6.1)

from some initial condition x(0) = x0. In Eqn. (6.1), f(x; g) denotes the element-

wise application of the static scalar gain function f to the neuronal activity vector x.

In keeping with Hennequin et al. (2014), we set the single-neuron time constant to

be τ = 200 ms. The gain function f , which governs the transformation of neuronal

activity x into firing rates relative to a baseline rate r0, is

f(xi; gi) =


r0 tanh(gixi/r0) , if xi < 0 ,

(rmax − r0) tanh(gixi/(rmax − r0)) , if xi ≥ 0 ,

(6.2)

where the gain value gi is the slope of the function f at xi = 0 and thus gi controls

the input–output sensitivity of neuron i (Rajan et al., 2010). We use a baseline rate

of r0 = 20 Hz and a maximum firing rate of rmax = 100 Hz (see Section 3.7 for a

discussion of why we choose these values). As we mentioned in Section 1.2.1,

f(x; g) describes the neuronal firing rates relative to the baseline r0.

We generate the synaptic weight matrixW in line with Hennequin et al. (2014),

that is, we use stability-optimised circuits (see Section 1.2.4). Unless we state

otherwise, we use the initial condition x(t = 0) = x0 that maximises the evoked

energy ε(x0) in Eqn. (C.20) (see Appendix C.2 for a discussion of how to obtain

such an initial condition). With this setup, the neuronal dynamics governed by

Eqn. (6.1) display complex multiphasic activity transients that last approximately

0.5 s (i.e., similar to those observed in motor cortex when executing movements

(Churchland et al., 2012; Hennequin et al., 2014)). For all of our simulations in

this chapter, we use a 400-neuron network with 40 random modulatory groups (see

Section 4.1.1 for a discussion of how we determine such groups).

110

6.2.2 Creating target muscle activity

In this chapter, we generate target muscle activities of duration T = 2.5 s. We

draw muscle activity from a Gaussian process with a covariance function K ∈
[0, T]× [0, T] → R≥0 that consists of a product of a squared-exponential kernel (to

enforce temporal smoothness) and a non-stationary kernel that produces a tem-

poral envelope similar to that of real electromyogram (EMG) data during reaching

(Churchland et al., 2012). Specifically,

K(t, t′) = e−
(t−t′)2

2`2 × E(t/σ)× E(t′/σ) , (6.3)

where E(t) = te(−t2/4) and we set σ = 550 ms and ` = 250 ms (see Section 2.6 for a

discussion on how the parameters σ and ` affect the resulting muscle activity). We

also multiply the resulting muscle activity by a scalar to ensure that it has the same

order of magnitude as the neuronal activity, and we use a sampling rate of 200 Hz

(i.e., each movement consists of 500 evenly-spaced points). We then construct a

‘fast’ (0.5 s) variant of each movement. We sample fast variants using 100 evenly-

spaced points, and we then augment 400 instances of 0 values to the final 2 s of

the movement to ensure that both ‘fast’ (0.5 s) and ‘slow’ (2.5 s) movement variants

have the same length (see the top right of Fig. 6.1a).

In other words, target muscle activity that we generate corresponds to Lu

where LLᵀ = K, K ∈ R500×500 is the covariance function, u ∈ R500, and u ∼
N (0, I) (i.e., elements of the vector u are drawn independently and identically

from a Gaussian distribution with mean 0 standard deviation 1).

Note that we are modelling network output as a proxy for muscle-force activ-

ity. When we generate fast and slow movement variants, we scale the duration

of the muscle activity without changing its amplitude (see our generation process

in the paragraph immediately above). To actually generate the same movement

so that it lasts 5 times longer, we also need to scale the amplitude of the muscle

activity by the factor 1/52 = 1/25. To demonstrate the effectiveness of learning

111

through gain modulation, we omit this scaling, so the tasks on which we train are

more difficult ones, as the target activity without the scaling has a substantially

larger amplitude throughout the movement. (However, see Fig. 6.7 in Appendix

6.B where we do scale the amplitude of muscle activity when creating fast and

slow movement variants.) Alternatively, it may be possible for gain modulation of

downstream motoneurons in the spinal cord to account for scaling of the amplitude

of muscle activity when performing movements at different speeds (for example,

see Vestergaard and Berg (2015)). Finally, if the output of cortical motor circuits al-

ways has a large amplitude, no matter the speed of the movement, then this signal

is more robust to noise compared with if cortical motor circuits produce very low-

amplitude outputs for slow movements. It would be interesting to experimentally

measure the relative contributions to amplitude scaling from cortical motor circuits

and downstream motoneurons when performing movements at different speeds.

6.2.3 Network output

As in Chapters 2–5, we compute the network output activity z(t) at time t as a

weighted linear combination of excitatory neuronal firing rates:

z(t) = m
ᵀ
f(xE(t); gE) + b , (6.4)

where m ,xE(t) , gE ∈ RM , the quantity M is the number of excitatory neurons,

xE(t) is the excitatory neuronal activity, and f is the gain function (see Eqn. (6.2)).

See each subsequent section for details on how we set the readout weights m

and the offset b. (For the remainder of this chapter, we will use the term ‘readout

weights’ to denote the collection of both m and b.)

6.3 Learning slow-movement variants through gain modulation

In this section, we investigate whether we can learn gain patterns that generate

the same movement shape but lasting 5 times longer.

112

6.3.1 Training using our learning rule

To investigate whether we can learn gain patterns that generate slow-movement

variants (see Fig. 6.1a), we generate 10 different movement shapes as we de-

scribed in Section 6.2.2. For each of the 10 movements, we fit readout weights

using least-squares regression, such that with all gains set to 1, the network out-

put generates the fast variant (which lasts approximately 0.5 s). To ameliorate any

issues of overfitting, we use 100 noisy trials, in which we add Gaussian white noise

to the initial condition x0 for each trial with a signal-to-noise ratio of 30 dB (Hen-

nequin et al., 2014). We use a 400-neuron network with 40 random modulatory

groups (see Section 4.1.1 for a discussion of how we determine such groups). For

each of the 10 movements, we train the neuronal gains for each of the 40 modu-

latory groups using our learning rule in Eqns. (3.5) and (3.6) so that the network

output generates the slow-movement variant. (The initial condition x0 and readout

weights remain fixed.) We use 60, 000 training iterations, and we run 10 indepen-

dent training sessions for each of the 10 different movements.

We find that it is possible to generate slow-movement variants using our learn-

ing rule (see Fig. 6.1b). Thus, through only gain changes, we can generate the

same movement shape so that it lasts 5 times longer. As expected, we observe that

the neuronal firing rates associated with the slow variant decay to baseline more

slowly than the fast variant (see the bottom panel of Fig. 6.1b). Some movements

appear to be more difficult to learn than others (see Fig. 6.6a in Appendix 6.B)

and the distribution of neuronal gains after training is different to what we obtained

previously when learning target movements that last 0.5 s (compare Fig. 6.6c in

Appendix 6.B with Fig. 5.2a). After training, the real part of the eigenvalues of the

linearised version of Eqn. (6.1) around x = 0 are all below 0 (see the left panel

of Fig. 6.6e in Appendix 6.B). Therefore, the equilibrium point at x = 0 remains

stable after training although many of the gain values have changed substantially

(see Fig. 6.6c in Appendix 6.B).

113

a b c
Slow output

Fast output

Slow-variant target

Slow output

Fast output

Slow-variant target

Slow variant

Fast variant

E
M

G

0 0.5 1 1.5 2 2.5
Time (s)

F
iri

ng
 r

at
e

5 Hz

1 s

0 0.5 1 1.5 2 2.5
Time (s)

5 Hz

. . .

. . .

. . .

Initial

Cortical network

cond.

Figure 6.1: Learning slow-movement variants through gain modulation. a, Schematic of

gain patterns for fast (0.5 s) and slow (2.5 s) movement variants. (Here and throughout

this chapter, we show the former in blue and the latter in orange.) We train a 400-neuron

network using 40 random modulatory groups for all simulations (see Section 6.2). b, (Top)

We train a network to extend its output from a fast to a slow-movement variant using our

reward-based learning rule. (Bottom) Example firing rates of 50 excitatory and 50 inhibitory

neurons for both fast and slow speed variants. c, The same as panel (b), but now we use

a back-propagation algorithm to train the neuronal gains (see Section 6.3.2).

We also perform the same task as the one that we show in Fig. 6.1b but when

we scale the amplitude of the slow-variant target movement by the factor 1/25

(see Fig. 6.7 in Appendix 6.B). Scaling the slow-variant target movement by this

factor corresponds to the same actual movement but lasting 5 times longer (see

Section 6.2.2). We find that we can also accurately generate the amplitude-scaled

slow-variant target (see Fig. 6.7 in Appendix 6.B). Therefore, this suggests that

gain modulation can also account for the scaling of muscle activity when performing

movements at different speeds. However, as we noted in Section 6.2.2, it may

be possible for gain modulation of downstream motoneurons in the spinal cord to

account for scaling of the amplitude of muscle activity when performing movements

at different speeds (for example, see Vestergaard and Berg (2015)).

6.3.2 Training using back-propagation

Although the slow-movement variants can be learned successfully using our learn-

ing rule Eqn. (3.5), we find that the slow-variant outputs tend to be more sensitive

114

to noisy initial conditions than the fast variants (see the left panel of Fig. 6.8 in Ap-

pendix 6.B). Furthermore, in Fig. 6.1b, we see that the neuronal firing rates have

decayed substantially towards baseline after approximately 0.75 s, even though the

output activity is close to its maximum value. Therefore, a small change in the ini-

tial condition would likely substantially affect the neuronal activity for times after

approximately 0.75 s.

We therefore perform the task that we showed in Fig. 6.1b (i.e., generating slow-

movement variants by changing neuronal gains) using a gradient-descent training

procedure with gradients that we obtain from back-propagation (Rumelhart et al.,

1986). Together with learning the gain pattern for the slow variant, we jointly opti-

mise a single set of readout weights (shared by both the fast and slow-movement

variants), as we discussed in Section 6.2.3, as part of the same training proce-

dure. We still fix the gains at 1 for the fast variant. The cost function for the training

procedure is equal to the squared Euclidean 2-norm between actual network out-

puts and the corresponding target outputs at both fast and slow speeds plus the

Euclidean 2-norm of the readout weights, where the latter acts as a regulariser.

We run gradient descent for 500 iterations, which is well after the cost has stopped

decreasing. (Note that we require many fewer training iterations for this task when

we train using back-propagation compared with using our reward-based learning

rule; compare the horizontal axis scales in Figs. 6.6a and b.)

Using the target movement from Fig. 6.1b, we plot the output of the back-

propagation training procedure in Fig. 6.1c, and we plot results of all simulations

in Figs. 6.6b,d in Appendix 6.B on the same 10 target movements as those that

we used in Fig. 6.6a. Following training, the slow variants are learned successfully

(see Figs. 6.1c and 6.6b in Appendix 6.B) and are less sensitive to the same noisy

initial conditions (see Fig. 6.8 in Appendix 6.B). The neuronal firing rates oscil-

late transiently, with a substantially lower frequency than either the fast variants or

the slow variants trained by our reward-based learning rule. (Compare the bottom

115

panels of Figs. 6.1b and 6.1c.)

6.3.3 Controlling the speed of multiple movements associated with different

initial conditions

In Fig. 6.1, we trained a single gain pattern to generate a slow variant of a given

movement shape. However, it may be more useful if a single gain pattern can gen-

erate slow-movement variants of multiple different movement shapes associated

with different initial conditions (ICs) of the neuronal activity. We test this possibility

by generating a collection of m orthogonal ICs, in which each IC evokes neuronal

activity of approximately equal amplitude with all gains set to 1 (see Appendix 6.A.1

for how we generate such ICs). Given m ICs, we also uniformly-at-random choose

m fast target movements and their slow counterparts (see Section 6.2.2) out of

a fixed set of 10 different movements. We then train a 400-neuron network (with

40 random modulatory groups; see Section 6.2) to generate the correct fast and

slow target movements by optimising a single set of readout weights (shared by

both fast and slow variants) and a single gain pattern that generates the slow vari-

ants. (We set the gains for each of the fast variants to 1.) We train using the same

gradient-descent method with back-propagation that we described in Section 6.3.2.

We find that a single gain pattern can slow down multiple (up to approximately

five) distinct movements, which result from five orthogonal ICs, by a factor of 5 (see

Fig. 6.2). Errors tend to increase with an increasing number m of slow-movement

variants that one wishes generate with a single gain pattern (see Figs. 6.2a,b).

Consequently, based on the results that we have presented in Section 6.3, one

can extend the temporal scale of transient neuronal activity several-fold and for

multiple movements through specific changes in neuronal gains.

116

5000 100 200 300 400

Number of iterations

0

0.25

0.5

0.75

1

E
rr

or

No. of initial conds.:

1 10

b

c

a

1 2 3 4 5 6 7

0.5 s

8 9 10

Number of initial conditions (m)

0
0.2
0.4
0.6
0.8

1

E
rr

or

E
M

G
E

M
G

= 6m

Slow outputFast output Slow-variant target

Figure 6.2: Learning multiple slow-

movement variants through gain modula-

tion. a, Box plot of the slow-variant errors

after training for 10 independent training

sessions for each number m of initial

conditions for m = 1, . . . , 10. We use Tukey

style for the whiskers. (See Appendix 6.A.1

for further simulation details.) b, Mean error

over 10 training sessions for m = 1, . . . , 10

initial conditions. c, For the case of 6 initial

conditions, we plot 4 example outputs that

correspond to the 5th-smallest error across

the 10 training sessions.

6.4 Smoothly controlling the speed of movements

Following training on a slow and a fast variant of the same movement (see Sec-

tion 6.3), we find that naively interpolating between the two gain patterns does not

yield the same movement at intermediate speeds (see Fig. 6.3a), consistent with

human subjects being unable to consistently apply learned movements at novel

speeds (Collier and Wright, 1995; Hardy et al., 2017). Therefore, even when we

consider ‘fast’ and ‘slow’ variants of the same movement, both our learning rule and

the back-propagation training do not learn to ‘slow down’ the movement; instead,

they learn two seemingly unrelated gain patterns.

However, it is possible to modify our back-propagation training procedure by in-

cluding additional constraints on the fast and slow gain patterns (see Appendix 6.A.2)

so that interpolating between the two gain patterns produces progressively faster or

slower outputs (see Fig. 6.3b). We successfully train the network to generate two

movements (associated with two different initial conditions) at 7 different speeds

117

ba

E
M

G

0.5 s
0

0.4
0.8
1.2
1.6

1.2
1.6

E
rr

or

E
rr

or

Reward-based rule Back-prop.

Movement 1
Movement 2

0.5 1 1.5 2 2.50.5 1 1.5 2 2.5

Movement duration (s)Movement duration (s)

0
0.4
0.8

f

d

Movement 1

Movement 2E
M

G

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5

Time (s)

E
M

G

Movement 1

Movement 2

c

e

0.5 1 1.5 2 2.5

0

0.5

1

1.5

2

G
ai

n

Linear
version

0.5 1 1.5 2 2.5

Movement duration (s)

Time (s)Movement duration (s)

0

0.5

1

1.5

2

G
ai

n

Figure 6.3: Smoothly controlling the speed of movements through gain modulation. a, In-

terpolation between fast and slow gain patterns does not reliably generate target outputs

of intermediate speeds when trained only at the fast and slow speeds. We show an ex-

ample output (orange) that lasts a duration of 1.5 s and the associated target (grey). b,

Linear interpolation between fast and slow gain patterns can successfully generate target

outputs when trained at 5 additional intermediate speeds. We train 1 set of gain patterns

(see panel (c)) on two target outputs associated with 2 different initial conditions (see Ap-

pendix 6.A.2). (We plot these results with the same axis scale as in panel (a).) c, The

7 optimised gain patterns for all 40 modulatory groups when training at 7 evenly-spaced

speeds. (We call this collection of 7 trained gain patterns a ‘speed manifold’.) d, We show

outputs that result from the 7 trained gain patterns from panel (c) for both initial conditions

(see Appendix 6.A.2). e, We can linearly interpolate between the fast and the slow gain

patterns from panel (c). We use this interpolation to generate the outputs we show in panel

(f). f, Outputs from both initial conditions for 5 evenly-spaced speeds between the fast and

slow gain patterns from panel (e).

with durations that range from 0.5 s to 2.5 s (see Figs. 6.3c,d and Appendix 6.A.2

for further simulation details). Linear interpolation between the fast and slow gain

118

patterns (see Fig. 6.3e) now generates smooth speed control of both movements

at any intermediate speed (see Figs. 6.3b,f). In other words, to control movement

speed, we learn a ‘manifold’ (Gallego et al., 2017) in neuronal gain space that in-

terpolates between the fast and the slow gain patterns (see Fig. 6.9 in Appendix

6.B).

6.5 Joint control of movement shape and speed through gain

modulation

Thus far, we have shown that gain modulation can affect either the shape or the

speed of a movement. Flexible and independent control of both the shape and

speed of a movement (i.e., joint control) necessitates separate representations of

space and time in the gain patterns. A relatively simple possibility is to find a single,

universal manifold in neuronal gain space (see Section 6.4) for speed control (we

call this the ‘speed manifold’) and combine it with gain patterns that are associated

with different movement shapes. Biologically, this may be achievable using sepa-

rate modulatory systems. We achieve such separation by simultaneously training

one speed manifold and 10 gain patterns for 10 different movement shapes such

that movements are encoded by the product of shape-specific and speed-specific

gain patterns. (See Fig. 6.4a and Appendix 6.A.3.) Following training, we can

generate each of the 10 movements at the 7 trained speeds by multiplying a speed-

specific gain pattern (see Fig. 6.4b) with the desired shape-specific gain pattern.

Importantly, we can also accurately generate each of the 10 different movements

at any intermediate speed by simply linearly interpolating between the fast and

slow gain patterns (see Figs. 6.4c,d). We thereby obtain separate families of gain

patterns for movement shape and speed that independently control movements in

space and time.

119

a

. . .

.

. . .

. . .

1
sg

2
sg

3
sg

1
mg

2
mg

n
mg

)1
mg×i

sg

i = 1
i = 2
i = 3

(f

)n
mg×i

sg(f

×ga
in

 2

gain 1

ga
in

40

0.5 s

d

b c

E
M

G
 (

a.
u.

)

0 0.5 1 1.5 2 2.5

Time (s)
0 0.5 1 1.5 2 2.5

0.5 1 1.5 2 2.5
0

0.4
0.8
1.2
1.6

2
2.4

E
rr

or

Movement duration (s)

0.5

0

1

2

G
ai

n 1.5

0.5 1 1.5 2 2.5

Movement duration (s)

0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

E
rr

or

Movement duration (s)

Figure 6.4: Joint control of movement shape and speed. a, One can jointly learn the gain

patterns gsi for (left box) movement speed and gmj for (right box) movement shape so that

the product of two such gain patterns produces a desired movement at a desired speed. In

the rightmost panel, we show example outputs for two movement shapes at 3 interpolated

speeds between the fast and slow gain patterns (see Section 6.5). b, We show the 7

optimised gain patterns for controlling movement speed (i.e., gsi for i ∈ {1, . . . , 7} from

panel (a)) for all 40 modulatory groups when training on 10 different movement shapes. c,

Mean error over all 10 movements when linearly interpolating between the fast and slow

gain patterns for controlling movement speed from panel (b). We use the same vertical

axis scale as in Figs. 6.3a,b. In the inset, we plot the same data using a different vertical

axis scale. The vertical dashed lines identify the 7 movement durations that we use for

training. d, Outputs at 5 interpolated speeds between the fast and slow gain patterns for 6

of the 10 movements. (See Appendix 6.A.3 for further details.)

120

6.6 Learning gain-pattern primitives to control movement shape

and speed

Finally, we investigate whether we can construct new movements with arbitrary

durations using previously acquired gain pattern primitives. We examine the pos-

sibility of using both the speed manifold and the 10 trained shape-specific gain

patterns that we obtained previously (see Fig. 6.4) as a library of spatio-temporal

motor primitives. We test this library using 100 novel target movement shapes using

a similar approach to the one that we used in Chapter 5. For each target move-

ment, we learn the coefficients for linearly combining the 10 shape-specific gain

pattern primitives to obtain each new movement at both the fast and slow speeds

while keeping the speed manifold fixed (see Fig. 6.5a and Appendix 6.A.4).

We find that it is possible to accurately generate the new movements at fast

and slow speeds using the above spatio-temporal library of gain patterns (see

Fig. 6.10 in Appendix 6.B), and we are able to produce the new movements with

similar accuracies as those at the fast and slow speeds at any intermediate speed

by linearly interpolating between the fast and slow gain patterns from the unal-

tered speed manifold. (See Fig. 6.5b and the black and red curves in Fig. 6.5c.)

The mean error of approximately 0.5 across all movement durations (see the black

curve in Fig. 6.5c) is similar to the error that we obtained previously from a move-

ment library that consists of 10 gain patterns (see Fig. 5.3c). We can substantially

outperform both the (uniformly-at-random) permuted gain patterns from their asso-

ciated targets (see Appendix 6.A.4) and using least-squares fitting (which we used

previously in Chapter 5) to combine gain patterns. (See the grey and black dashed

curves in Fig. 6.5c.)

Consistent with the idea of rapidly generating movements using motor primi-

tives, we generate correlated target shapes by using correlated combinations of

gain patterns (see Fig. 6.5d). (Note that we are unlikely to observe correlation

121

10g

a

b c d

. . .

.

. . .

. . .

. . .
1
mg

2
mg

mg

× ga
in

 2

gain 1

ga
in

40

c1

c

0 0.5 1 1.5 2 2.5
Time (s)

E
M

G

0.5 1 1.5 2 2.5
Movement duration (s)

Movement-shape library

Learn new combination

Speed manifoldTarget

Control

0

1

2

3

E
rr

or
-1 -0.5 0 0.5 1

Correlation coeff. between
combination coeffs.

-1

-0.5

0

0.5

1

C
or

re
la

tio
n

co
ef

f.
be

tw
ee

n
ta

rg
et

s

10

Learning combinations
Linear fit

Example

Figure 6.5: Learning gain-pattern primitives to control movement shape and speed. a,

We are able to learn to combine (left) previously acquired gain patterns for movement

shapes to generate (centre) a new target movement at both fast and slow speeds simul-

taneously using (right) a fixed manifold in neuronal gain space for controlling movement

speed (see Appendix 6.A.4). b, We plot the output, at 3 different speeds, that produces

the 50th-smallest error (across all 100 target movements) between the output and the tar-

get when summing errors at both fast and slow speeds. c, Mean network output error

across all 100 target movements for all durations when learning to combine gain patterns

(black solid curve). We plot the error for the output from panel (b) in red. As a control, we

plot the mean error over all target movements when dissociating the learned gain patterns

from their target movement by permuting (uniformly at random) the target movements (see

the grey curve). We also plot the mean error over all target movements when combining

gain patterns using a least-squares fit of the 10 learned movement shapes to the target

(black dashed curve) (see Appendix 6.A.4). (To generate outputs of a specific duration, we

linearly interpolate between the fast and slow gain patterns.) d, We plot the Pearson cor-

relation coefficient between each pair of target movements versus the Pearson correlation

coefficient between the corresponding pair of learned combination coefficients c1, . . . , c10.

values close to −1 between pairs of combination coefficients because the coeffi-

cients c1, . . . , c10 are likely to sum to approximately 1 (in fact the mean sum of the

coefficients is 0.91).) We obtain a similar relationship between coefficient correla-

122

tions and target correlations as those that we obtained in Fig. 5.3 (see Fig. 6.11 in

Appendix 6.B). Therefore, one can use previously learned gain patterns for control-

ling movement shapes to generate new movements while maintaining independent

control of movement speed.

6.7 Conclusions and discussion

Animals can generate a large variety of movements over many different time scales.

However, it remains unclear how the brain may achieve such movement control.

When performing motor tasks, especially ones in which motor timing is an impor-

tant factor, neural activity in relevant cortical areas evolves dynamically over time

and can change subtly depending on timing-specific task contexts (Crowe et al.,

2014; Remington et al., 2018; Russo et al., 2018; Wang et al., 2018). It has been

suggested that certain types of inputs (e.g., tonic (i.e., static) or neuromodulatory)

to cortical neurons are likely mechanisms by which one can change neural activ-

ity so as to produce relevant, timing-specific behaviour (Remington et al., 2018;

Soares et al., 2016; Wang et al., 2018). Such inputs can affect neural input–output

gain sensitivity in the cortical circuit that receives the input (Chance et al., 2002;

Thurley et al., 2008). It has also been suggested that effective changes in neural

input–output nonlinearities may be a potential mechanism for controlling cortical

activity in motor-timing tasks (Wang et al., 2018). Motivated by such observations

and our results from Chapter 2, in this chapter, we investigated whether changes in

neuronal input–output gains alone in recurrent neuronal networks enables control

of the speed of network outputs (i.e., movements).

We found that one can learn gain patterns that generate the same movement

shape, but lasting 5 times longer. Moreover, we can find a single gain pattern that

generates a slow-movement variant, lasting 2.5 s, of multiple different movements

which are associated with different initial conditions of the neuronal activity. We can

also find two gain patterns so that linearly interpolating between them generates

123

smooth speed control of multiple movements. We call such a set of gain patterns

for controlling movement speed a ‘speed manifold’.

We also investigated whether one can learn gain patterns that affect either only

the shape or only speed of an intended movement. We found that we can learn

multiple gain patterns associated with different movement shapes together with a

single speed manifold where the product of a shape-specific gain pattern with a

speed-specific gain pattern on the speed manifold generates the desired move-

ment at the desired speed. Finally, we showed that we can learn to combine previ-

ously learned shape-specific gain patterns to generate new movement shapes at

fast and slow speeds. Moreover, a previously trained speed manifold can generate

the new movements at any intermediate speed.

There are few models of how neural networks can control the speed of network

outputs (Hardy et al., 2017; Hass and Durstewitz, 2016; Laje and Buonomano,

2013; Remington et al., 2018; Wang et al., 2018). Most studies focus on training

recurrent connections in networks that exhibit chaotic neuronal dynamics (Hardy

et al., 2017; Laje and Buonomano, 2013; Remington et al., 2018; Wang et al.,

2018) (although one can train the network in such a way so that the neuronal dy-

namics decay to baseline over time and are no longer chaotic (Hardy et al., 2017)).

For example, in Hardy et al. (2017), the authors trained the full weight matrix of

a recurrent neuronal network so that two different tonic inputs generate the same

neuronal activity but which last different durations; one that lasts 2 s and one that

lasts 8 s. In contrast, we used networks with a fixed architecture that automatically

exhibit rich transient neuronal activity that resembles experimentally observed cor-

tical recordings (see Section 1.2.4) (Churchland et al., 2012; Hennequin et al.,

2014).

Our model is the first to demonstrate that the speed of network outputs can be

controlled by changing only neuronal gains and without requiring retraining of the

synaptic weight matrix. Also, in contrast to simply changing the single-neuron time

124

constant τ (which uniformly scales the duration, but does not affect the shape of

each neuron’s activity) or changing a tonic input (which simply changes the equi-

librium point of neuronal activity in a stable (at least approximately) linear system

(see Section 2.3)), training through gain modulation enables interactions between

the shape and duration of network outputs (see Section 6.5).

It would be interesting to understand the differences between training the weight

matrix together with changing tonic inputs to control the speed of network outputs,

compared with training neuronal gains. Indeed, there may be some level of simi-

larity because a tonic input can be an effective mechanism for mimicking neuronal

gain changes (Chance et al., 2002). It would also be important to know whether

a tonic input can control the speed of many different movements which are as-

sociated with different initial conditions of the neuronal activity. Alternatively, one

could investigate whether simply changing the initial condition of the neuronal ac-

tivity can control the speed of network outputs (although, this approach has been

demonstrated to be incompatible with a dataset consisting of recordings of medial

frontal cortex of monkeys trained to measure and produce time intervals; see Fig. 8

in Remington et al. (2018)).

The results that we presented in this chapter may also relate to experimental

observations that dopamine controls movement vigour (Niv et al., 2007; Panigrahi

et al., 2015). For example, to smoothly control movement speed, we find that slow

movement variants tend to correspond to gain patterns with a smaller mean gain

compared with the fast variants (e.g., see Figs. 6.3c and 6.4b where we find that

the mean gain decreases from approximately 1.08 to 0.53 and from approximately

1.26 to 0.73, respectively). This decrease in gain for slow movements is in accor-

dance with observations that dopamine affects both neuronal gain (Hernandez-

Lopez et al., 2000; Thurley et al., 2008) and that decreases in dopamine are asso-

ciated with slowness of movement in Parkinson’s disease (Kaasinen et al., 2014;

Marsden, 1989). This also relates to our results from Chapter 2 where we found

125

that increases in global gain generate neural activity transients that have a longer

duration but also an increased frequency of oscillation. Thus, to generate slow

movement variants through gain modulation, there is a trade-off between extend-

ing neural activity transients and reducing their frequency of oscillation. Our results

suggest that decreases in mean gain are most suitable for generating slow move-

ment variants (see Figs. 6.3c and 6.4b).

Although there are several plausible approaches for how neuronal networks

may generate dynamics at different speeds (Hardy et al., 2017; Remington et al.,

2018; Wang et al., 2018), we need more studies linking neural recordings with

computational models to uncover mechanisms that the brain uses for such flexible

sensorimotor computations.

6.A Supplementary simulation details

6.A.1 Details for Fig. 6.2

In these simulations, we train a single gain pattern that is shared by m different

movements, which each last 2.5 s and where each movement corresponds to a

different initial condition (IC). To generate a collection of m such ICs, in which each

IC evokes neuronal activity of approximately equal amplitude with all gains set to

1, we randomly rotate the top m eigenvectors of the observability Gramian of the

matrixW −I (Hennequin et al., 2014). Specifically, we do this by creating a matrix

of m columns — one for each of these m eigenvectors — and right-multiplying this

matrix by a random m × m orthogonal matrix (which we obtain via a QR decom-

position of a random matrix with elements drawn from a normal distribution with

mean 1 and standard deviation 1).

Given m ICs, we uniformly-at-random choose m fast target movements and

their slow counterparts (see Section 6.2.2) out of a fixed set of 10 different move-

ments. We then train a recurrent neuronal network to generate the correct fast and

126

slow target movements by optimising a single set of readout weights (shared by

both fast and slow variants) and a single gain pattern that generates the slow vari-

ants (where we set the gains for each of the fast variants to 1). We train using the

same gradient-descent method with back-propagation that we described in Sec-

tion 6.3.2. We plot the results as a function of the number m of movement–IC pairs

(see Fig. 6.2) for 10 independent draws of the ICs that we just described above.

6.A.2 Details for Fig. 6.3

For each of the 10 trained movements we used in Figs. 6.6a,b, we extract the mean

minimum error across all simulations for the outputs that we obtain both from our

learning rule (see Fig. 6.6a) and from training via back-propagation (see Fig. 6.6b).

We then linearly interpolate between the learned gain patterns for the fast and slow

outputs, and we calculate the error (see Appendix D) between the output and the

target movement at the interpolated speed. We calculate these errors for many

interpolated movement durations between 0.5 s and 2.5 s, and we plot the mean

errors for both our learning rule and the back-propagation training in Fig. 6.3a. We

also show an example output that lasts 1.5 s.

To demonstrate that gain modulation can provide effective smooth control of

movement speed for multiple initial conditions of the neuronal activity, we train net-

works to generate a pair of target movements in response to a corresponding pair

of orthogonal initial conditions (see Appendix 6.A.1 for a description of how we

generate such initial conditions) at fast and slow speeds and also at each of 5

intermediate, evenly-spaced speeds in between these extremes. To do this, we

parametrise the gain pattern of speed index s (with s ∈ {1, . . . , 7}) as a convex

combination of a gain pattern gs=1 for fast movements and a gain pattern gs=7 for

slow movements, with interpolation coefficients of λs (with gs = λsgs=1+(1−λs)gs=7,

λ1 = 1, and λ7 = 0). We optimise (using back-propagation, as discussed in Sec-

tion 6.3.2) over gs=1, gs=7, the 5 interpolation coefficients λs (with s ∈ {2, . . . , 6}),

127

and a single set of readout weights. For a given speed s, we use the gain pattern

gs for both movements.

We plot the 7 learned gain patterns in Fig. 6.3c, and we plot their correspond-

ing outputs for both initial conditions in Fig. 6.3d. We show the linear version of

the speed manifold (i.e., interpolating between the fast and slow gain patterns) in

Fig. 6.3e. For both initial conditions, we plot outputs at 5 evenly-spaced speeds

by linearly interpolating between the fast (gs=1) and slow (gs=7) gain patterns in

Fig. 6.3f.

6.A.3 Details for Fig. 6.4

We simultaneously train gain patterns for controlling different movements (i.e., dif-

ferent movement shapes) and their speed. We train a recurrent neuronal net-

work (using back-propagation, as we discussed in Appendix 6.A.2) to generate

each of 10 different movement shapes at 7 different, evenly-spaced speeds (rang-

ing from the fast variant to the slow variant) using a single fixed initial condition

x0. To jointly learn gain patterns that control movement shape and speed, we

parametrise each gain pattern as the element-wise product of a gain pattern that

encodes shape (which we use at each speed for a given shape) and a gain pattern

that encodes speed (which we use at each shape for a given speed). We again

parametrise (see Appendix 6.A.2) the gain pattern that encodes the speed index

s (with s ∈ {1, . . . , 7}) as a convex combination of two common endpoints, gs=1

(which we use for the fast-movement variants) and gs=7 (which we use for the slow-

movement variants). We thus optimise over 10 gain patterns for movement shape,

2 gain patterns each for fast and slow movement speeds, 5 speed-interpolation

coefficients (see above), and a single set of readout weights.

In Fig. 6.4b, we plot the gain patterns that we obtain for controlling movement

speed at each of the 7 trained speeds. In Fig. 6.4c, we show the mean error

between the network output and the target over the 10 target movements when

128

generating gain patterns for movement speed by linearly interpolating between the

trained fast (gs=1) and slow (gs=7) gain patterns. In Fig. 6.4d, we plot the outputs

of 6 of the 10 gain patterns for movement shape at each of 5 interpolated speeds

between the fast and the slow gain patterns. In the rightmost panel of Fig. 6.4a,

we plot 2 example movement shapes at 3 interpolated speeds.

6.A.4 Details for Figs. 6.5, 6.10, and 6.11

For these figures, we use the 10 trained gain patterns for movement shapes, as

well as the speed manifold from Fig. 6.4 (see Appendix 6.A.3). Using our learning

rule from Eqns. (3.5) and (3.6), we train 10 coefficients c1, . . . , c10 (with one for

each shape-specific gain pattern; see Fig. 6.5a) to construct a new gain pattern

that, together with the speed manifold, generates a new target movement at the

fast and slow speeds. Specifically, we replace the gains gi (for i ∈ {1, . . . , N})
with the coefficients ci (for i ∈ {1, . . . , 10}) in Eqns. (3.5) and (3.6). We use the

mean of the errors at the fast and slow speeds. To generate the network output

at the fast and slow speeds, respectively, we calculate the element-wise product

between the newly constructed gain pattern and the fast and slow gain pattern,

respectively, on the speed manifold. We independently train, using 10, 000 training

iterations, the coefficients c1, . . . , c10 on each of the 100 target movements that we

used for Fig. 5.3. In Fig. 6.10, we plot histograms of the errors over the 100 target

movements after training for both the fast and slow speeds. We plot the mean

error (see the black curve) over all 100 target movements at interpolated speeds in

Fig. 6.5c. For the output that produces the 50th-smallest summed errors from fast

and slow speeds, we plot the error in red in Fig. 6.5c. As a control, we calculate

the mean error between the network output and the target over the 100 target

movements when choosing one of the 100 newly learned gain patterns uniformly

at random without replacement. (See the grey curve in Fig. 6.5c.)

Additionally, instead of learning to combine gain patterns using the method that

129

we described in the previous paragraph, we determine coefficients c1, . . . , c10 using

a least-squares regression by fitting the 10 learned movements to each of the 100

target movements at the fast and slow speeds simultaneously and requiring that

cj ≥ 0 for all j and
∑10

j=1 cj = 1 (i.e., we use the same method that we described in

Section 5.1.1). (See the black dashed curve in Fig. 6.5c.)

Finally, we plot the Pearson correlation coefficient between pairs of target move-

ments versus the Pearson correlation coefficient between corresponding pairs of

learned coefficients c1, . . . , c10 in Fig. 6.5d. In our visualisation, we plot only 1, 000 of

the 4, 950 data points. (We choose these points uniformly at random.) In Fig. 6.11,

we also compare these correlations with correlations that we obtain from Fig. 5.3.

For the case of 10 library elements, we choose one of the 100 randomly-generated

combinations of 10 library elements uniformly at random and calculate correlations

between pairs of fitted coefficients and corresponding pairs of targets. We again

plot only 1, 000 of the 4, 950 data points. (We choose these points uniformly at

random.)

130

6.B Supplementary figures

0 15 30 45 60
Number of Iterations (103)

0

0.5

1

1.5

E
rr

or

0 0.5 1 1.5 2 2.5
Gain

0

25

50

75

100

D
en

si
ty

 (
a.

u.
)

-2 -1.5 -1 -0.5 0
Real part

0

25

50

75

100

D
en

si
ty

 (
a.

u.
)

0 2.5 5

Before training

After training

7.5 10
Imaginary part

0 100 200 300 400 500
Number of iterations

0

0.5

1

1.5

E
rr

or

0 0.5 1 1.5 2 2.5 3
Gain

0

25

50

75

100

D
en

si
ty

 (
a.

u.
)

-3 -2 -1 0
Real part

0

25

50

75

100
D

en
si

ty
 (

a.
u.

)

0 5 10
Imaginary part

a

c

e f

d

b

Before training

After training

Figure 6.6: Additional results for controlling movement speeds through gain modulation.

a, Mean error over 10 training sessions for each of 10 different movements when learn-

ing gain patterns for slow-movement variants using our reward-based learning rule (see

Section 6.3.1). b, Mean error over 10 training sessions for the same 10 movements when

instead learning gain patterns for slow-movement variants using a back-propagation algo-

rithm (see Section 6.3.2). c, Distribution of gains for the slow-movement variants across

all training sessions using our reward-based learning rule. d, Distribution of gains for the

slow-movement variants across all training sessions when using back-propagation. e, His-

tograms of the real and imaginary parts of the eigenvalues of the linearisation of Eqn. (6.1)

around x = 0 before and after training using our reward-based rule for the example in

Fig. 6.1b. f, Histograms of the real and imaginary parts of the eigenvalues of the lineari-

sation of Eqn. (6.1) around x = 0 before and after training using the back-propagation

algorithm for the example in Fig. 6.1c. (For each simulation, we train a 400-neuron network

using 40 random modulatory groups (see Section 6.3).)

131

0 0.5 1 1.5 2 2.5

Time (seconds)

E
M

G

Slow output

Fast output

Slow-variant target

Slow output (scaled amplitude)

Slow-variant target
(scaled amplitude)

Figure 6.7: Learning slow-movement variants when scaling both the amplitude and dura-

tion of target movements. We can accurately perform the same task as the one that we

showed in Fig. 6.1b when we also scale the amplitude of the slow-variant target movement

by the factor 1/25 (see the dashed curves). Scaling the slow-variant target movement by

this factor corresponds to the same actual movement but lasting 5 times longer (see Sec-

tion 6.2.2). We also reproduce the results from the top panel of Fig. 6.1b (solid curves) for

comparison. Note that the error for the amplitude-scaled task is larger than the amplitude-

fixed task. The errors are reduced during training from approximately 128 to 0.9 (99.3 %

reduction) and from approximately 1.22 to 0.02 (98.36 % reduction), respectively. This is

because we scale the error by the total sum of squared errors of the target. (See Eqn. (2.8)

for the definition of error that we use.)

132

0 1 2

Time (seconds)

E
M

G

Output from noisy initial condition

Output with
no noise

0 1 2

Time (seconds)

Figure 6.8: On the left and right, respectively, we show the same outputs that we plotted in

Figs. 6.1b and 6.1c, but we now add white Gaussian noise (with a signal-to-noise ratio of

4 dB) to the initial condition of the neuronal activity. We observe that the outputs from the

back-propagation training procedure (right-hand panel) are less sensitive than the outputs

from the learning rule (left hand panel) to noisy initial conditions.

Fast

Slowga
in

 2

gain 1

ga
in

40

Figure 6.9: We show an illustration of a manifold in neuronal gain space for controlling

movement speed when we have 40 modulatory groups (see Section 6.4).

0 0.5 1 1.5 2
Error

0

5

10

15

20

25

30

35

N
um

be
r

of
 m

ov
em

en
ts

Figure 6.10: We plot histograms of the errors over the 100 target movements at both fast

(blue) and slow (orange) speeds when learning to combine gain patterns using a library of

spatio-temporal gain pattern primitives (see Section 6.6).

133

-1 -0.5 0 0.5 1

Correlation coeff. between combination coeffs.

-1

-0.5

0

0.5

1

C
or

re
la

tio
n

co
ef

f.
be

tw
ee

n
ta

rg
et

s

Correlation coeff. between combination coeffs.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 6.11: On the left, we replot Fig. 6.5d. On the right, we show the same correlations

except using data from Fig. 5.3. We show correlations for the case of 10 library elements

from Fig. 5.3 and we choose one of the 100 randomly-generated combinations of 10 library

elements uniformly at random.

134

CHAPTER 7

Conclusions and future work

In this thesis, we have shown that modulating the input–output gain of neurons

in recurrent neuronal networks is an effective mechanism for controlling the shape

and speed of network outputs. We primarily used recurrent neuronal-network mod-

els that exhibit neuronal activities reminiscent of monkey primary motor cortex

(Churchland et al., 2012; Hennequin et al., 2014). Therefore, such models may

inform our understanding of how motor cortex controls and generates movements

(Hennequin et al., 2014; Shenoy et al., 2013; Sussillo et al., 2015). Experimental

recordings of motor cortex suggest that the population activity is specific to the

movement being performed (Churchland et al., 2010, 2012). This population activ-

ity can arise through several possible mechanisms. Distinct neuronal activity can

emerge from a fixed population-level dynamical system with different movement-

specific preparatory states (Churchland et al., 2010). Alternatively, one can change

the underlying dynamical system through modification of the effective connectivity

(Friston, 2011) even when a preparatory state is the same across movements.

Such changes in effective connectivity can arise either through a feedback loop

(e.g., a low-rank addition to the synaptic weight matrix (Sussillo and Abbott, 2009))

135

or through patterns of movement-specific gains, as we explored in this thesis. We

found that movement-specific gain patterns provide a similar performance to train-

ing a different initial condition for each desired output (with a fixed duration) and that

both of these approaches outperform a rank-1 perturbation of the synaptic weight

matrix (see Fig. 3.4). Gain modulation thus provides a complementary method of

controlling neuronal dynamics for flexible and independent manipulation of output

shape. Additionally, we showed that gain modulation provides a compelling mech-

anism for extending the duration of activity transients without needing to carefully

construct movement-specific network architectures. Although our results demon-

strate the effectiveness of learning through gain modulation in a variety of tasks,

more research is required to understand how effective gain changes can be in

other, possibly more complex tasks (e.g., using more readout units and training on

working memory tasks (Hoerzer et al., 2014; Sussillo and Abbott, 2009)).

We propose that gain modulation may occur via neuromodulators (Hernandez-

Lopez et al., 2000; Thurley et al., 2008; Wei et al., 2014), but it may also arise

from a tonic (i.e., static) input that shifts each neuron’s resting activity within the

dynamic range of its input–output function (Chance et al., 2002) (for example,

through inputs from the cerebellum). Although this is an effective way of mim-

icking gain changes in recurrent neuronal-network models with strongly nonlinear

single-neuron dynamics (Sussillo and Barak, 2013; Wang et al., 2018), we were

unable to produce desired target outputs by training a tonic input. It is worth not-

ing that a tonic input also modifies baseline neuronal activity, thereby altering the

output muscle activities away from rest. Alternatively, a quadratic gain function

(Hennequin et al., 2018; Murphy et al., 2016) may enable a tonic input to reliably

imitate gain changes because, for example, a monotonically increasing input to a

neuron will cause a monotonic increase in the neuron’s effective gain.

In our model, in which the recurrent connectivity remains fixed, synaptic modifi-

cations may take place upstream of the motor circuit (e.g., in the input synapses to

136

the presumed neuromodulatory neurons (Martins and Froemke, 2015)). Changes

in neuronal gains can also work in concert with plasticity in cortical circuits, thereby

allowing changes in the modulatory state of a network to be transferred into circuit

connectivity (Swinehart and Abbott, 2005), consistent with known interactions be-

tween neuromodulation and plasticity (Frémaux and Gerstner, 2016; Gu, 2002; Luft

and Schwarz, 2009; Marder, 2012; Martins and Froemke, 2015). However, future

work will be needed to understand the potential interactions between gain modu-

lation and synaptic plasticity in recurrent neuronal-network models. Consequently,

understanding the neural basis of motor learning may necessitate recording from a

potentially broader set of brain areas than those circuits whose activity correlates

directly with movement dynamics.

Our results build on a growing literature of taking a dynamical-systems ap-

proach to studying temporally-structured cortical activity. This perspective has

been effective for investigations of several cortical regions (Breakspear, 2017; Church-

land et al., 2010, 2012; Kao et al., 2015; Mante et al., 2013; Shenoy et al., 2013;

Wang et al., 2018). In line with this approach, our results may also be applicable to

other recurrent cortical circuits that exhibit rich temporal dynamics (e.g., decision-

making dynamics in prefrontal cortex (Mante et al., 2013), temporally-structured

memories, etc.).

In this thesis, we used firing-rate models to describe neuronal activity. However,

real neurons communicate by sending action potentials (or ‘spikes’) to one another.

Although we discussed some of our primary reasons for using firing-rate models

in Section 1.1 (e.g., the greater analytical tractability offered by firing-rate models

and because motor cortices appear to operate as dynamical systems, therefore

firing-rate models seem a natural choice for modelling such circuits), it is important

to understand the effectiveness of learning through gain modulation when using

more biologically realistic spiking models (Gerstner and Kistler, 2002). Recently,

there have been several studies investigating the relationships between spiking

137

and rate models when training either model on particular tasks (DePasquale et al.,

2016, 2018; Gilra and Gerstner, 2017; Hennequin et al., 2014; Nicola and Clopath,

2017; Schaffer et al., 2013). Some of these studies can obtain qualitatively similar

dynamics, regardless of whether one uses a spiking or a rate model (DePasquale

et al., 2016; Hennequin et al., 2014; Schaffer et al., 2013). Additionally, spiking

models can now be trained in a qualitatively similar manner to training approaches

conventionally used for firing-rate models (DePasquale et al., 2018; Gilra and Ger-

stner, 2017; Nicola and Clopath, 2017). Given several of these recent observa-

tions, we thus expect that training through gain modulation in spiking models likely

also provides an effective mechanism for controlling the shape and speed of net-

work outputs.

In summary, our results support the view that knowing only the structure of neu-

ronal networks is not sufficient to explain their dynamics (Bargmann, 2012; Bassett

and Sporns, 2017). We extend current understanding of the effects of neuromodu-

lation (Bargmann, 2012; Kida and Mitsushima, 2018; Marder, 2012; Thurley et al.,

2008) and show that it is possible to control a recurrent neuronal network’s com-

putations without changing its connectivity. We found that modulating only neu-

ronal responsiveness enables flexible control of cortical activity. We were also able

to combine previously learned modulation states to generate new desired activ-

ity patterns, and we demonstrated that employing gain modulation allows one to

smoothly and accurately control the duration of network outputs. Our results thus

suggest the possibility that gain modulation is a central part of learning in cortical

circuits.

138

APPENDIX A

Solution of linear neuronal dynamics using eigenvectors

and eigenvalues

In this appendix, we show how to construct the solution of a linear recurrent neu-

ronal network using the eigenvalues and eigenvectors of the associated system.

Let’s first write down the linear dynamical system from Eqn. (1.9); it has N = 2M

neurons (of which M are excitatory and M are inhibitory) and the neuronal dynam-

ics are given by

τ
dx(t)

dt
= −x(t) +Wx(t) , (A.1)

with x(0) = x0. We let A = 1
τ
(W − I). We can then find the eigenvectors vi and

associated eigenvalues λi of the matrix A by solving

Avi = λvi . (A.2)

The entries of W are always real, so the spectrum of A has only real and/or

complex-conjugate pairs of eigenvalues (Strang, 2016). If there are a nonzero

number k ∈ N of purely real eigenvalues, we label these eigenvalues as λi for

i = 1, . . . , k. The remaining N − k eigenvalues are complex-conjugate pairs.

139

Therefore, we label these complex-conjugate eigenvalues as λi = λ̄i+(N−k)/2 for

i = k + 1, . . . , (N + k)/2. We can then write the solution of Eqn. (A.1) as:

x(t) =
N∑
i=1

ciui(t) , (A.3)

where

ui(t) =


eλitvi , i = 1, . . . , k ,

eRe(λi)t
(

Re(vi) cos(Im(λi)t)− Im(vi) sin(Im(λi)t)
)
, i = k + 1, . . . , (N + k)/2 ,

eRe(λi)t
(

Im(vi) cos(Im(λi)t) + Re(vi) sin(Im(λi)t)
)
, i = (N + k)/2 + 1, . . . , N .

(A.4)

The coefficients ci can be determined using the (real-valued) initial condition x0 at

t = 0. We use several steps to get to the purely real solutions in Eqn. (A.4) (e.g.,

we use Euler’s formula); these steps are outlined in several textbooks on dynamical

systems, such as in (Teschl, 2012, Section 3.2).

140

APPENDIX B

Eigenvalues of a matrix following addition of a diagonal

matrix

In this appendix, we provide a lemma and a proof that show how the eigenvalues of

a matrix are affected following the addition of a diagonal matrix in which all diagonal

entries are identical.

Lemma 1. Let µ be an eigenvalue of the square matrix A and let A′ = A + cI,

with c ∈ R. The quantity µ+ c is then an eigenvalue of A′. Moreover, the spectrum

of A′ is the spectrum of A shifted c units in the positive direction.

Proof. Assume that the matrixA has eigenvector v with eigenvalue µ, soAv = µv.

Let A′ = A+ cI, with c ∈ R. It follows that

A′v = (A+ cI)v

= Av + cv

= µv + cv

= (µ+ c)v .

Thus, every eigenvalue µ of A has an associated eigenvalue µ+ c of A′.

141

APPENDIX C

Algorithmic procedure for generating stability-optimised

circuits and finding preferred initial conditions

In Section 1.2.4, we briefly described the procedure for constructing stability-optimised

circuits (Hennequin et al., 2014). In this appendix, we provide a detailed descrip-

tion of the method that we use to create stability-optimised circuits and how to

find so called ‘preferred’ initial conditions that give rise to rich transient neuronal

dynamics. This method was first presented in Hennequin et al. (2014).

C.1 Creating stability-optimised circuits

To create a stability-optimised circuit, one starts with a weight matrixW ofN = 2M

neurons (of which M are excitatory and M are inhibitory), where we label the

excitatory population as E and the inhibitory population as I. In block form, the

weight matrix is

W =

 WEE WEI

WIE WII

 . (C.1)

142

The probability p of connection between any two neurons is set to 0.1. Nonzero

elements of W are set to w0/
√
N for excitatory connections and to −γw0/

√
N

for inhibitory connections, where w2
0 = 2ρ2/(p(1 − p)(1 + γ2)). With γ = 1, this

construction results in W having an approximately circular spectrum of radius ρ

(Hennequin et al., 2014) (also see Section 1.2.2 and Girko (1983)). We set ρ = 10

and the inhibition/excitation ratio to γ = 3 (Hennequin et al., 2014).

After the construction of the initial W , all of the excitatory connections remain

fixed. An optimisation algorithm (see steps 1–8 below) is then used to change

the inhibitory connections so that the spectral abscissa (i.e., the largest real part

in the spectrum) of W is reduced below 1, which implies that the linear neuronal

dynamics governed by

τ
dx

dt
= Ax , (C.2)

where A = W − I and I is the identity matrix, exhibit a stable equilibrium point at

0. An effective way to reduce the spectral abscissa of W is to actually minimise

the ‘smoothed spectral abscissa’ α̃(A), which is an upper bound of the spectral

abscissa α(A) that — among other advantages — can be minimised using an

algorithmic procedure (Vanbiervliet et al., 2009).

Inhibitory weights are iteratively updated according to the negative matrix deriva-

tive ∂α̃(A)
∂A

. This matrix derivative is defined based on the observability and control-

lability Gramian matrices Q and P , respectively, of the system in Eqn. (C.2). The

symmetric positive definite matrices Q and P play a fundamental role in linear–

quadratic control theory (Dorato et al., 1998).

If α(A) < 0, the observability and controllability Gramians Q and P , respec-

tively, are given by

Q ≡ 2

τ

∫ ∞
0

e
t
τ
Aᵀ

e
t
τ
Adt (C.3)

P ≡ 2

τ

∫ ∞
0

e
t
τ
Ae

t
τ
Aᵀ

dt . (C.4)

Although Eqns. (C.3) and (C.4) are integrals involving quadratic terms, one can

143

compute Q and P by solving a set of linear equations. This can be seen by noting

that

A
ᵀ
Q =

2

τ

∫ ∞
0

A
ᵀ
e
t
τ
Aᵀ

e
t
τ
Adt , (C.5)

QA =
2

τ

∫ ∞
0

e
t
τ
Aᵀ

e
t
τ
AAdt . (C.6)

Therefore,

A
ᵀ
Q+QA =

2

τ

∫ ∞
0

A
ᵀ
e
t
τ
Aᵀ

e
t
τ
A + e

t
τ
Aᵀ

e
t
τ
AAdt (C.7)

= 2

∫ ∞
0

d

dt
(e

t
τ
Aᵀ

e
t
τ
A)dt (C.8)

= 2e
t
τ
Aᵀ

e
t
τ
A
∣∣∞
0

(C.9)

= −2I . (C.10)

Using a similar approach, one can obtain a linear equation for the controllability

Gramian P . We then have

A
ᵀ
Q+QA = −2I , (C.11)

AP + PA
ᵀ

= −2I . (C.12)

Following Hennequin et al. (2014), we define the ‘evoked energy’ ε(x0) from

some initial condition x0 as ε(x0) = 2
τ

∫∞
0
‖x(t)‖2

2dt, and it can be shown that

ε(x0) = xᵀ
0Qx0 (Hennequin et al., 2014).

The matrixQ is symmetric positive definite, so all of its eigenvalues are real and

positive, thus the maximum eigenvalue is smaller than the sum of all eigenvalues.

Additionally, the trace of Q (which we denote by Tr[Q]) is equal to the sum of its

eigenvalues simply because Q is a square matrix. Therefore, for the maximum

eigenvalue λmax of Q and its associated eigenvector v with ‖v‖2 = 1, the evoked

energy due to the initial condition v is given by

ε(v) = v
ᵀ
Qv = v

ᵀ
λmaxv = λmaxv

ᵀ
v = λmax < Tr[Q] . (C.13)

Thus, if Tr[Q] is finite — which implies that Tr[Q] < 1/ε for some ε > 0 — then

the evoked energy ε(v) is less than 1/ε for the aforementioned ε, implying that the

144

dynamics given by Eqn. (C.2) are asymptotically stable. Note that if ε is small, then

the neuronal dynamics are close to instability, because Tr[Q] is large.

For a weight matrix that is not (yet) linearly asymptotically stable, one can ask

what is the minimum s such that the spectral abscissa of the matrix W − sI is less

than 0. This is equivalent to asking what is the minimum s such that Tr[Q(s)] < 1/ε

for ε > 0, where

Q(s) ≡ 2

τ

∫ ∞
0

e
t
τ

(W−sI)ᵀe
t
τ

(W−sI)dt . (C.14)

From Eqn. (C.11), Q(s) is the solution to the following linear equation:

(W − sI)
ᵀ
Q(s) +Q(s)(W − sI) = −2I . (C.15)

Analogously for P (s) we also obtain:

(W − sI)P (s) + P (s)(W − sI)
ᵀ

= −2I . (C.16)

It is known that Tr[Q(s)] is a monotonic decreasing function of s (Vanbiervliet

et al., 2009). This makes sense intuitively, because the larger s, the spectrum of

W − sI becomes more negative. Thus, the dynamics are ‘more’ stable, implying

that the evoked energy, which is upper-bounded by Tr[Q(s)], is smaller. Mathemat-

ically, the unique s that satisfies Tr[Q(s)] = 1/ε is called the ε-smoothed spectral

abscissa of W (Vanbiervliet et al., 2009). We denote the ε-smoothed spectral

abscissa of W by α̃ε(W).

The quantity α̃ε(W) is larger than or equal to α(W), so if we aim to minimise

α(W), we can instead seek to minimise α̃ε(W). Importantly, we can compute the

derivative of α̃ε(W) with respect to W (Vanbiervliet et al., 2009). The gradient of

α̃ε(W) with respect to W is

∂α̃ε(W)

∂W
=

Q(α̃ε)P (α̃ε)

Tr[Q(α̃ε)P (α̃ε)]
. (C.17)

We now detail the iterative algorithmic steps we use to reduce the spectral abscissa

of W :

145

1. Compute α(W) for the current weight matrix W .

2. Set s = max(α(W)× 1.5, α(W) + 0.2). This guarantees that α̃ε(W) > α(W).

The values 1.5 and 0.2 are used because, from test simulations using all the

parameter values that we specified above, these values have been found

to be good choices (see the supplementary information in Hennequin et al.

(2014) for further discussion).

3. Solve Eqns. (C.15) and (C.16) using a Lyapunov equation solver (e.g., LYAP

in MATLAB) to obtain Q(s) and P (s).

4. Calculate the gradient with which to change the weights to reduce the smoothed

spectral abscissa of W :

∂α̃ε(W)

∂W
=

Q(s)P (s)

Tr[Q(s)P (s)]
. (C.18)

5. For every inhibitory presynaptic neuron j and any postsynaptic neuron i, we

change the inhibitory weight Wij in the following way

Wij ← Wij − η
∂α̃ε(W)

∂W
, (C.19)

where η is a learning rate. We find that setting η = 5 normally allows efficient

and smooth gradient descent.

6. Set any positive inhibitory weights to 0.

7. Enforce inhibition to be a mean of γ = 3 times stronger than excitation. This is

achieved by rescaling the inhibitory ‘blocks’ WEI and WII by −γW EE/W EI

and −γW IE/W II , respectively, where

W =

 WEE WEI

WIE WII

 ,

and WXY denotes the mean over all elements in the matrix WXY . This

step is not necessary for stability optimisation, but see the supplementary

information of Hennequin et al. (2014) for a discussion.

146

8. Restrict the density of inhibitory connections to be less than or equal to 0.4.

This is achieved by setting the 60 % smallest-magnitude inhibitory connec-

tion strengths to 0. (One also removes any self-loops — Wii = 0 for all i —

because one can trivially shift the spectrum of W in the negative direction by

addition of a diagonal matrix with only negative elements.) This approach of

maintaining sparse inhibitory connectivity is different from that used in Hen-

nequin et al. (2014). We used this approach for simplicity. This constraint is

not required for stability optimisation, but adds to the biological realism of the

resulting weight matrix while still allowing the spectral abscissa to decrease

to a low value.

We repeat steps 1–8 until α(W) < 0.15. This is normally enough iterations for

convergence of the spectral abscissa.

C.2 Finding preferred initial conditions

We wish to find initial conditions that produce large deviations in neuronal activity

away from baseline (Hennequin et al., 2014). We define the so-called ‘optimal’

initial condition, as the (unit-norm) initial condition a1 that maximises the evoked

energy ε(a1) under the linear dynamics Eqn. (C.2), where

ε(a1) =
2

τ

∫ ∞
0

‖x(t)‖2
2dt . (C.20)

(Note that for a weight matrixW with α(W) < 1, the envelope of the linear dynam-

ics (1.9) decays exponentially over time, thus ε is also finite.)

From the previous section, we know that Eqn. (C.20) can be re-written as

ε(a) = a
ᵀ
Qa (C.21)

where Q is the observability Gramian matrix defined by Eqn. (C.3). Recall that Q

is a symmetric, positive-definite matrix. As we already showed in Eqn. (C.13), the

147

eigenvector corresponding to the maximum eigenvalue of Q produces the max-

imum evoked energy ε under the linear dynamics Eqn. (C.2). In fact, the basis

of Q, when placed in decreasing order according to their associated eigenval-

ues, defines a collection a1,a2, . . . ,aN of N orthogonal initial conditions that each

maximise the evoked energy ε(ak) within the subspace orthogonal to all previous

preferred initial conditions a1, . . . ,ak−1. We also note that for the case of linear

neuronal dynamics, ε(ak) = ε(a−k). Finally, Q can be easily found by solving

Eqn. (C.11) using a Lyapunov equation solver such as LYAP in MATLAB.

Unless we state otherwise, we choose the eigenvector associated with the

largest eigenvalue of Q (note that all of its eigenvalues are real and positive) as

the initial condition x0 for the neuronal activity. Following Hennequin et al. (2014),

we also scale x0 so that ‖x0‖2 = 1.5
√
N .

148

APPENDIX D

Measuring error in network output

We compute the error ε between the network output z ∈ RT and a target y ∈ RT

by calculating

ε = 1−R2 =

∑T
t=1(z(t)− y(t))2∑T
t=1(y(t)− ȳ)2

, (D.1)

where ȳ = 1
T

∑T
t=1 y(t) and R2 is the commonly used coefficient of determination

(which is often called simply ‘R-squared’). Therefore, an error of ε = 1 implies that

the performance is as bad as if the output z were equal to the mean of the target y

and thus does not capture any variations in output. When we use multiple readout

units, we take the mean error ε across all outputs. We use this definition of error

throughout the entire thesis.

149

Bibliography

L. F. Abbott and S. B. Nelson. Synaptic plasticity: Taming the beast. Nature Neu-

roscience, 3:1178–1183, 2000. (Cited on page 5.)

A. Afshar, G. Santhanam, B. M. Yu, S. I. Ryu, M. Sahani, and K. V. Shenoy. Single-

trial neural correlates of arm movement preparation. Neuron, 71(3):555–564,

2011. (Cited on pages 4 and 21.)

C. I. Bargmann. Beyond the connectome: How neuromodulators shape neural

circuits. BioEssays, 34(6):458–465, 2012. (Cited on page 138.)

D. S. Bassett and O. Sporns. Network neuroscience. Nature Neuroscience, 20(3):

353–364, 2017. (Cited on page 138.)

E. Bizzi and V. C. K. Cheung. The neural origin of muscle synergies. Fron-

tiers in Computational Neuroscience, 7(51):1–6, 2013. (Cited on pages 91, 99,

and 100.)

T. V. P. Bliss and G. L. Collingridge. A synaptic model of memory: long-term poten-

tiation in the hippocampus. Nature, 361(6407):31–39, 1993. (Cited on page 3.)

Y. L. Boureau and P. Dayan. Opponency revisited: Competition and cooperation

between dopamine and serotonin. Neuropsychopharmacology, 36(1):74–97,

2011. (Cited on page 62.)

150

V. Braitenberg and A. Schüz. Anatomy of the Cortex. Springer, 1991. (Cited on

page 14.)

M. Breakspear. Dynamic models of large-scale brain activity. Nature Neuroscience,

20(3):340–352, 2017. (Cited on pages 9 and 137.)

J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. O’Doherty, D. M. Santucci, D. F.

Dimitrov, P. G. Patil, C. S. Henriquez, and M. A. L. Nicolelis. Learning to control

a brain-machine interface for reaching and grasping by primates. PLoS Biology,

1(2):e42, 2003. (Cited on page 101.)

F. S. Chance, L. F. Abbott, and A. D. Reyes. Gain modulation from background

synaptic input. Neuron, 35(4):773–782, 2002. (Cited on pages 12, 24, 25, 86,

123, 125, and 136.)

M. M. Churchland and J. P. Cunningham. A dynamical basis set for generating

reaches. Cold Spring Harbor Symposia on Quantitative Biology, 79:67–80, 2014.

(Cited on pages 4, 21, and 22.)

M. M. Churchland, J. P. Cunningham, M. T. Kaufman, S. I. Ryu, and K. V. Shenoy.

Cortical preparatory activity: Representation of movement or first cog in a dy-

namical machine? Neuron, 68(3):387–400, 2010. (Cited on pages 4, 21, 44, 54,

67, 135, and 137.)

M. M. Churchland, J. P. Cunningham, M. T. Kaufman, J. D. Foster, P. Nuyujukian,

S. I. Ryu, and K. V. Shenoy. Neural population dynamics during reaching. Nature,

487(7405):1–8, 2012. (Cited on pages 4, 17, 21, 23, 29, 39, 44, 54, 56, 57, 69,

72, 110, 111, 124, 135, and 137.)

G. L. Collier and C. E. Wright. Temporal rescaling of simple and complex ratios in

rhythmic tapping. Journal of Experimental Psychology: Human Perception and

Performance, 21(3):602–627, 1995. (Cited on page 117.)

151

R. Cools, K. Nakamura, and N. D. Daw. Serotonin and dopamine: Unifying af-

fective, activational, and decision functions. Neuropsychopharmacology, 36(1):

98–113, 2011. (Cited on page 62.)

J. P. Coxon, J. W. Stinear, and W. D. Byblow. Amplitude of muscle stretch mod-

ulates corticomotor gain during passive movement. Brain Research, 1031(1):

109–117, 2005. (Cited on page 28.)

D. A. Crowe, W. Zarco, R. Bartolo, and H. Merchant. Dynamic representation

of the temporal and sequential structure of rhythmic movements in the primate

medial premotor cortex. The Journal of Neuroscience, 34(36):11972–11983,

2014. (Cited on page 123.)

S. J. Cruikshank and N. M. Weinberger. Evidence for the Hebbian hypothesis

in experience-dependent physiological plasticity of neocortex: a critical review.

Brain Research Reviews, 22(3):191–228, 1996. (Cited on page 3.)

P. Damier, E. C. Hirsch, Y. Agid, and A. M. Graybiel. The substantia nigra of the

human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s

disease. Brain, 122(8):1437–1448, 1999. (Cited on pages 43 and 45.)

P. Dayan and L. Abbott. Theoretical Neuroscience: Computational and Mathemat-

ical Modeling of Neural Systems. MIT Press, 2001. (Cited on pages 4, 5, 6, 7,

8, 13, and 14.)

M. de Bono and A. Villu Maricq. Neuronal substrates of complex behaviors in

C. elegans. Annual Review of Neuroscience, 28(1):451–501, 2005. (Cited on

page 1.)

B. DePasquale, M. M. Churchland, and L. F. Abbott. Using firing-rate dynamics

to train recurrent networks of spiking model neurons. arXiv:1601.07620, 2016.

(Cited on page 138.)

152

B. DePasquale, C. J. Cueva, K. Rajan, G. S. Escola, and L. F. Abbott. full-

FORCE: A target-based method for training recurrent networks. PLoS One, 13

(2):e0191527, 2018. (Cited on page 138.)

P. Dorato, C. T. Abdallah, V. Cerone, and D. H. Jacobson. Linear–Quadratic Con-

trol: An Introduction. Prentice Hall, 1998. (Cited on page 143.)

K. Doya. Metalearning and neuromodulation. Neural Networks, 15(4–6):495–506,

2002. (Cited on page 62.)

E. Eldar, J. D. Cohen, and Y. Niv. The effects of neural gain on attention and

learning. Nature Neuroscience, 16(8):1146–1153, 2013. (Cited on page 26.)

T. Flash and B. Hochner. Motor primitives in vertebrates and invertebrates. Current

Opinion in Neurobiology, 15(6):660–666, 2005. (Cited on pages 91 and 100.)

N. Frémaux and W. Gerstner. Neuromodulated spike-timing-dependent plasticity,

and theory of three-factor learning rules. Frontiers in Neural Circuits, 9:85, 2016.

(Cited on pages 62, 63, and 137.)

K. J. Friston. Functional and effective connectivity: A review. Brain Connectivity, 1

(1):13–36, 2011. (Cited on page 135.)

J. A. Gallego, M. G. Perich, L. E. Miller, and S. A. Solla. Neural manifolds for the

control of movement. Neuron, 94(5):978–984, 2017. (Cited on pages 4 and 119.)

W. Gerstner and W. M. Kistler. Spiking Neuron Models: Single Neurons, Popula-

tions, Plasticity. Cambridge University Press, 2002. (Cited on pages 4 and 137.)

W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski. Neuronal Dynamics: From

Single Neurons to Networks and Models of Cognition. Cambridge University

Press, 2014. (Cited on pages 4, 5, 6, 8, and 14.)

153

A. Gilra and W. Gerstner. Predicting nonlinear dynamics by stable local learning in

a recurrent spiking neural network. eLife, 6:e28295, 2017. (Cited on page 138.)

V. L. Girko. Circular law. Theory of Probability and its Applications, 29(4):694–706,

1983. (Cited on pages 14 and 143.)

S. F. Giszter. Motor primitives — new data and future questions. Current Opinion

in Neurobiology, 33:156–165, 2015. (Cited on pages 91, 99, and 100.)

M. D. Golub, P. T. Sadtler, E. R. Oby, K. M. Quick, S. I. Ryu, E. C. Tyler-kabara, A. P.

Batista, S. M. Chase, and B. M. Yu. Learning by neural reassociation. Nature

Neuroscience, 21(4):607–616, 2018. (Cited on pages 54, 90, 99, and 101.)

Q. Gu. Neuromodulatory transmitter systems in the cortex and their role in cortical

plasticity. Neuroscience, 111(4):815–835, 2002. (Cited on page 137.)

N. F. Hardy and D. V. Buonomano. Encoding time in feedforward trajectories of

a recurrent neural network model. Neural Computation, 30(2):378–396, 2018.

(Cited on page 108.)

N. F. Hardy, V. Goudar, J. L. Romero-Sosa, and D. V. Buonomano. A model

of temporal scaling correctly predicts that Weber’s law is speed-dependent.

bioRxiv:159590, 2017. (Cited on pages 108, 117, 124, and 126.)

J. Hass and D. Durstewitz. Time at the center, or time at the side? Assessing

current models of time perception. Current Opinion in Behavioral Sciences, 8:

238–244, 2016. (Cited on page 124.)

D. O. Hebb. The Organization of Behavior. New York: Wiley, 1949. (Cited on

page 3.)

G. Hennequin. Stability and Amplification in Plastic Cortical Circuits. PhD thesis,

Ecole Polytechnique Federale de Lausanne, 2013. (Cited on pages 16 and 31.)

154

G. Hennequin, T. P. Vogels, and W. Gerstner. Non-normal amplification in random

balanced neuronal networks. Physical Review E, 86(1):e011909, 2012. (Cited

on pages 14 and 16.)

G. Hennequin, T. P. Vogels, and W. Gerstner. Optimal control of transient dynamics

in balanced networks supports generation of complex movements. Neuron, 82

(6):1394–1406, 2014. (Cited on pages 9, 11, 12, 14, 15, 17, 18, 19, 21, 22, 27,

28, 29, 30, 36, 37, 39, 40, 56, 57, 58, 67, 72, 77, 92, 110, 113, 124, 126, 135,

138, 142, 143, 144, 146, 147, and 148.)

G. Hennequin, Y. Ahmadian, D. B. Rubin, M. Lengyel, and K. D. Miller. The dynam-

ical regime of sensory cortex: Stable dynamics around a single stimulus-tuned

attractor account for patterns of noise variability. Neuron, 98(4):846–860, 2018.

(Cited on pages 45 and 136.)

S. Hernandez-Lopez, T. Tkatch, E. Perez-Garci, E. Galarraga, J. Bargas,

H. Hamm, and D. J. Surmeier. D2 dopamine receptors in striatal medium spiny

neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-

IP3-calcineurin-signaling cascade. The Journal of Neuroscience, 20(24):8987–

8995, 2000. (Cited on pages 24, 26, 31, 43, 45, 62, 76, 100, 108, 125, and 136.)

N. J. Higham. The scaling and squaring method for the matrix exponential revis-

ited. SIAM Journal on Matrix Analysis and Applications, 26(4):1179–1193, 2005.

(Cited on page 10.)

G. M. Hoerzer, R. Legenstein, and W. Maass. Emergence of complex computa-

tional structures from chaotic neural networks through reward-modulated Heb-

bian learning. Cerebral Cortex, 24(3):677–690, 2014. (Cited on pages 12, 13,

39, 54, 58, 62, 63, 69, and 136.)

J. A. Hosp, A. Pekanovic, M. S. Rioult-Pedotti, and A. R. Luft. Dopaminergic projec-

tions from midbrain to primary motor cortex mediate motor skill learning. Jour-

155

nal of Neuroscience, 31(7):2481–2487, 2011. (Cited on pages 54, 62, 63, 76,

and 86.)

G. W. Huntley, J. H. Morrison, A. Prikhozhan, and S. C. Sealfon. Localization of

multiple dopamine receptor subtype mRNAs in human and monkey motor cortex

and striatum. Molecular Brain Research, 15(3-4):181–188, 1992. (Cited on

pages 63, 76, and 86.)

V. Kaasinen, J. Joutsa, T. Noponen, and M. Päivärinta. Akinetic crisis in Parkin-

son’s disease is associated with a severe loss of striatal Dopamine transporter

function: A report of two cases. Case Reports in Neurology, 6(3):275–280, 2014.

(Cited on page 125.)

H. Kambara, D. Shin, and Y. Koike. A computational model for optimal muscle

activity considering muscle viscoelasticity in wrist movements. Journal of Neu-

rophysiology, 109(8):2145–2160, 2013. (Cited on page 73.)

J. C. Kao, P. Nuyujukian, S. I. Ryu, M. M. Churchland, J. P. Cunningham, and K. V.

Shenoy. Single-trial dynamics of motor cortex and their applications to brain-

machine interfaces. Nature Communications, 6:7759, 2015. (Cited on pages 4,

29, 56, 69, and 137.)

H. Kida and D. Mitsushima. Mechanisms of motor learning mediated by synaptic

plasticity in rat primary motor cortex. Neuroscience Research, 128:14–18, 2018.

(Cited on pages 23, 54, 55, 62, and 138.)

T. Komiyama, T. R. Sato, D. H. Oconnor, Y. X. Zhang, D. Huber, B. M. Hooks,

M. Gabitto, and K. Svoboda. Learning-related fine-scale specificity imaged in

motor cortex circuits of behaving mice. Nature, 464(7292):1182–1186, 2010.

(Cited on page 23.)

R. Laje and D. V. Buonomano. Robust timing and motor patterns by taming chaos

156

in recurrent neural networks. Nature Neuroscience, 16(7):925–933, 2013. (Cited

on pages 108 and 124.)

A. H. Lara, J. P. Cunningham, and M. M. Churchland. Different population dynam-

ics in the supplementary motor area and motor cortex during reaching. Nature

Communications, 9:2754, 2018. (Cited on pages 22, 29, 56, and 69.)

S. Lefort, C. Tomm, J. C. Floyd Sarria, and C. C. Petersen. The excitatory neu-

ronal network of the C2 barrel column in mouse primary somatosensory cortex.

Neuron, 61(2):301–316, 2009. (Cited on page 14.)

R. Legenstein, S. M. Chase, A. B. Schwartz, and W. Maass. A reward-modulated

hebbian learning rule can explain experimentally observed network reorganiza-

tion in a brain control task. Journal of Neuroscience, 30(25):8400–8410, 2010.

(Cited on pages 54, 62, and 63.)

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape

of neural nets. arXiv:1712.09913, 2018. (Cited on page 87.)

N. Li, T.-W. Chen, Z. V. Guo, C. R. Gerfen, and K. Svoboda. A motor cortex cir-

cuit for motor planning and movement. Nature, 519(7541):51, 2015. (Cited on

page 67.)

A. R. Luft and S. Schwarz. Dopaminergic signals in primary motor cortex. Interna-

tional Journal of Developmental Neuroscience, 27(5):415–421, 2009. (Cited on

pages 62 and 137.)

V. Mante, D. Sussillo, K. V. Shenoy, and W. T. Newsome. Context-dependent com-

putation by recurrent dynamics in prefrontal cortex. Nature, 503(7474):78–84,

2013. (Cited on pages 9 and 137.)

E. Marder. Neuromodulation of neuronal circuits: Back to the future. Neuron, 76

(1):1–11, 2012. (Cited on pages 137 and 138.)

157

C. D. Marsden. Slowness of movement in Parkinson’s disease. Movement Disor-

ders, 4(1):S26–S37, 1989. (Cited on page 125.)

A. R. O. Martins and R. C. Froemke. Coordinated forms of noradrenergic plasticity

in the locus coeruleus and primary auditory cortex. Nature Neuroscience, 18

(10):1483–1492, 2015. (Cited on page 137.)

P. Mazzoni, R. A. Andersen, and M. I. Jordan. A more biologically plausible learning

rule for neural networks. Proceedings of the National Academy of Sciences, 88

(10):4433–4437, 1991. (Cited on page 62.)

T. Miconi. Biologically plausible learning in recurrent neural networks for flexible

decision tasks. eLife, 6:e20899, 2017. (Cited on pages 54, 62, 63, 69, and 73.)

K. D. Miller and F. Fumarola. Mathematical equivalence of two common forms of

firing rate models of neural networks. Neural Computation, 24(1):25–31, 2012.

(Cited on page 5.)

K. Molina-Luna, A. Pekanovic, S. Rohrich, B. Hertler, M. Schubring-Giese, M. S.

Rioult-Pedotti, and A. R. Luft. Dopamine in motor cortex is necessary for

skill learning and synaptic plasticity. PloS One, 4(9):e7082, 2009. (Cited on

pages 54, 62, 63, 76, 86, and 100.)

J. M. Montgomery and D. V. Madison. Discrete synaptic states define a major

mechanism of synapse plasticity. Trends in Neurosciences, 27(12):744–750,

2004. (Cited on page 5.)

B. K. Murphy and K. D. Miller. Balanced amplification: A new mechanism of se-

lective amplification of neural activity patterns. Neuron, 61(4):635–648, 2009.

(Cited on pages 15, 16, and 17.)

P. R. Murphy, E. Boonstra, and S. Nieuwenhuis. Global gain modulation generates

158

time-dependent urgency during perceptual choice in humans. Nature Commu-

nications, 7:13526, 2016. (Cited on pages 26 and 136.)

W. Nicola and C. Clopath. Supervised learning in spiking neural networks with

FORCE training. Nature Communications, 8(1):2208, 2017. (Cited on page 138.)

Y. Niv, N. D. Daw, D. Joel, and P. Dayan. Tonic dopamine: Opportunity costs and the

control of response vigor. Psychopharmacology, 191(3):507–520, 2007. (Cited

on pages 43, 45, and 125.)

B. Panigrahi, K. A. Martin, Y. Li, A. R. Graves, A. Vollmer, L. Olson, B. D. Mensh,

A. Y. Karpova, and J. T. Dudman. Dopamine is required for the neural represen-

tation and control of movement vigor. Cell, 162(6):1418–1430, 2015. (Cited on

pages 43, 45, and 125.)

T. Pereira. Stability of synchronized motion in complex networks. arXiv:1112.2297,

2011. (Cited on pages 30 and 47.)

M. G. Perich, J. A. Gallego, and L. E. Miller. A neural population mechanism for

rapid learning. bioRxiv:138743, 2017. (Cited on pages 23 and 54.)

A. J. Peters, S. X. Chen, and T. Komiyama. Emergence of reproducible spatiotem-

poral activity during motor learning. Nature, 510(7504):263–267, 2014. (Cited

on pages 23 and 54.)

K. Rajan and L. F. Abbott. Eigenvalue spectra of random matrices for neural net-

works. Physical Review Letters, 97(18):2–5, 2006. (Cited on pages 14 and 15.)

K. Rajan, L. F. Abbott, and H. Sompolinsky. Stimulus-dependent suppression of

chaos in recurrent neural networks. Physical Review E, 82(1):011903, 2010.

(Cited on pages 12, 13, 14, 28, 56, and 110.)

K. Rajan, C. D. Harvey, and D. W. Tank. Recurrent network models of sequence

generation and memory. Neuron, 90(1):128–142, 2016. (Cited on page 108.)

159

A. Rakitianskaia, E. Bekker, K. M. Malan, and A. Engelbrecht. Analysis of er-

ror landscapes in multi-layered neural networks for classification. In 2016 IEEE

Congress on Evolutionary Computation (CEC), pages 5270–5277, 2016. (Cited

on page 87.)

J.-A. Rathelot and P. L. Strick. Subdivisions of primary motor cortex based on

cortico-motoneuronal cells. Proceedings of the National Academy of Sciences,

106(3):918–923, 2009. (Cited on page 39.)

R. L. Redondo and R. G. M. Morris. Making memories last: The synaptic tagging

and capture hypothesis, 2011. (Cited on page 5.)

E. D. Remington, D. Narain, E. A. Hosseini, and M. Jazayeri. Flexible sensorimotor

computations through rapid reconfiguration of cortical dynamics. Neuron, 98(5):

1005–1019, 2018. (Cited on pages 108, 123, 124, 125, and 126.)

D. A. Rosenbaum. Human motor control. Academic press, 2009. (Cited on

page 54.)

J. S. Rothman, L. Cathala, V. Steuber, and R. A. Silver. Synaptic depression en-

ables neuronal gain control. Nature, 457(7232):1015–1018, 2009. (Cited on

pages 12 and 26.)

D. B. Rubin, S. D. Van Hooser, and K. D. Miller. The stabilized supralinear net-

work: A unifying circuit motif underlying multi-input integration in sensory cortex.

Neuron, 85(2):402–417, 2015. (Cited on page 45.)

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Nature, 323(6088):533–536, 1986. (Cited on pages 74

and 115.)

A. A. Russo, S. R. Bittner, S. M. Perkins, J. S. Seely, B. M. London, A. H. Lara,

A. Miri, N. J. Marshall, A. Kohn, T. M. Jessell, L. F. Abbott, J. P. Cunningham, and

160

M. M. Churchland. Motor cortex embeds muscle-like commands in an untangled

population response. Neuron, 97(4):1–14, 2018. (Cited on pages 4, 39, 57, 58,

72, and 123.)

P. T. Sadtler, K. M. Quick, M. D. Golub, S. M. Chase, S. I. Ryu, E. C. Tyler-Kabara,

B. M. Yu, and A. P. Batista. Neural constraints on learning. Nature, 512(7515):

423–426, 2014. (Cited on pages 23, 54, 90, 99, and 101.)

H. Saito, K. Katahira, K. Okanoya, and M. Okada. Statistical mechanics of struc-

tural and temporal credit assignment effects on learning in neural networks.

Physical Review E, 83(5), 2011. (Cited on page 63.)

E. Salinas and N. M. Bentley. Gain modulation as a mechanism for switching

reference frames, tasks, and targets, pages 121–142. Springer New York, New

York, NY, 3 edition, 2009. (Cited on page 26.)

E. Salinas and T. J. Sejnowski. Gain modulation in the central nervous system:

Where behavior, neurophysiology, and computation meet. Neuroscientist, 7(5):

430–440, 2001. (Cited on pages 23, 27, and 55.)

E. Salinas and P. Thier. Gain modulation: A major computational principle of the

central nervous system. Neuron, 27(1):15–21, 2000. (Cited on pages 23, 28,

and 55.)

J. N. Sanes and J. P. Donoghue. Plasticity and primary motor cortex. Annual

Review of Neuroscience, 23(1):393–415, 2000. (Cited on pages 23 and 54.)

E. S. Schaffer, S. Ostojic, and L. F. Abbott. A complex-valued firing-rate model that

approximates the dynamics of spiking networks. PLOS Computational Biology,

9(10):e1003301, 2013. (Cited on page 138.)

K. V. Shenoy, M. Sahani, and M. M. Churchland. Cortical control of arm move-

161

ments: a dynamical systems perspective. Annual Review of Neuroscience, 36:

337–359, 2013. (Cited on pages 4, 21, 23, 44, 54, 67, 135, and 137.)

S. Soares, B. V. Atallah, and J. J. Paton. Midbrain dopamine neurons control

judgment of time. Science, 354(6317):1273–1277, 2016. (Cited on pages 108

and 123.)

H. Sompolinsky, A. Crisanti, and H. J. Sommers. Chaos in random neural net-

works. Physical Review Letters, 61(3):259–262, 1988. (Cited on pages 12, 13,

14, 30, 32, and 67.)

D. A. Spampinato, H. J. Block, and P. A. Celnik. Cerebellar-M1 connectivity

changes associated with motor learning are somatotopic specific. Journal of

Neuroscience, 37(9):2377–2386, 2017. (Cited on page 100.)

G. Strang. Linear Algebra and its Applications. Wellesley Cambridge Press, fifth

edition, 2016. (Cited on pages 4, 10, and 139.)

P. Strata and R. Harvey. Dale’s principle. Brain Research Bulletin, 50(5):349–350,

1999. (Cited on pages 6 and 14.)

S. H. Strogatz. Nonlinear Dynamics and Chaos. Westview Press, second edition,

2014. (Cited on page 4.)

D. Sussillo and L. F. Abbott. Generating coherent patterns of activity from chaotic

neural networks. Neuron, 63(4):544–557, 2009. (Cited on pages 13, 14, 39, 54,

58, 67, 69, 135, and 136.)

D. Sussillo and O. Barak. Opening the black box: Low-dimensional dynamics in

high-dimensional recurrent neural networks. Neural Computation, 25(3):626–

649, 2013. (Cited on page 136.)

D. Sussillo, M. M. Churchland, M. T. Kaufman, and K. V. Shenoy. A neural network

that finds a naturalistic solution for the production of muscle activity. Nature

162

Neuroscience, 18(7):1025–1033, 2015. (Cited on pages 9, 22, 39, 54, 57, 58,

67, 72, and 135.)

C. D. Swinehart and L. F. Abbott. Supervised learning through neuronal response

modulation. Neural Computation, 17(3):609–631, 2005. (Cited on page 137.)

C. D. Swinehart, K. Bouchard, P. Partensky, and L. F. Abbott. Control of network

activity through neuronal response modulation. Neurocomputing, 58:327–335,

2004. (Cited on pages 23, 24, 27, and 55.)

G. Teschl. Ordinary Differential Equations and Dynamical Systems. American

Mathematical Society, 2012. (Cited on pages 4, 10, 11, 12, 30, 35, 47, 50,

and 140.)

K. A. Thoroughman and R. Shadmehr. Learning of action through adaptive com-

bination of motor primitives. Nature, 407(6805):742–747, 2000. (Cited on

pages 91 and 100.)

K. Thurley, W. Senn, and H.-R. Lüscher. Dopamine increases the gain of the input-

output response of rat prefrontal pyramidal neurons. Journal of Neurophysiology,

99(6):2985–2997, 2008. (Cited on pages 11, 12, 24, 26, 31, 43, 45, 62, 76, 86,

100, 108, 123, 125, 136, and 138.)

L. N. Trefethen and M. Embree. Spectra and Pseudospectra: The Behavior of

Nonnormal Matrices and Operators. Princeton University Press, 2005. (Cited on

page 16.)

J. Vanbiervliet, B. Vandereycken, W. Michiels, S. Vandewalle, and M. Diehl. The

smoothed spectral abscissa for robust stability optimization. SIAM Journal on

Optimization, 20(1):156–171, 2009. (Cited on pages 11, 18, 143, and 145.)

M. Vestergaard and R. W. Berg. Divisive gain modulation of motoneurons by in-

163

hibition optimizes muscular control. Journal of Neuroscience, 35(8):3711–3723,

2015. (Cited on pages 23, 26, 27, 28, 39, 45, 55, 62, 112, and 114.)

T. P. Vogels, K. Rajan, and L. Abbott. Neural network dynamics. Annual Review of

Neuroscience, 28:357–376, 2005. (Cited on pages 13 and 14.)

T. P. Vogels, H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner. Inhibitory plastic-

ity balances excitation and inhibition in sensory pathways and memory networks.

Science, 334(6062):1569–1573, 2011. (Cited on page 31.)

J. Wang, D. Narain, E. A. Hosseini, and M. Jazayeri. Flexible timing by tempo-

ral scaling of cortical responses. Nature Neuroscience, 21(1):102–110, 2018.

(Cited on pages 9, 24, 39, 58, 108, 123, 124, 126, 136, and 137.)

K. Wei, J. I. Glaser, L. Deng, C. K. Thompson, I. H. Stevenson, Q. Wang, T. G.

Hornby, C. J. Heckman, and K. P. Kording. Serotonin affects movement gain

control in the spinal cord. Journal of Neuroscience, 34(38):12690–12700, 2014.

(Cited on pages 23, 24, 26, 27, 28, 31, 45, 55, 62, 76, 100, and 136.)

J. Werfel, X. Xie, and H. S. Seung. Learning Curves for Stochastic Gradient De-

scent in Linear Feedforward Networks. Neural Computation, 17(12):2699–2718,

2005. (Cited on page 79.)

J. G. White, E. Southgate, J. N. Thomson, and S. Brenner. The structure of the

nervous system of Caenorhabditis elegans. Philos. Trans. R. Soc. Lond., 314

(1165):1–340, 1986. (Cited on page 2.)

S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos.

Springer, second edition, 2003. (Cited on pages 4 and 30.)

R. J. Williams. Simple statistical gradient-following algorithms for connection-

ist reinforcement learning. Machine Learning, 8(3):229–256, 1992. (Cited on

page 62.)

164

H. R. Wilson and J. D. Cowan. Excitatory and inhibitory interactions in localized

populations of model neurons. Biophysical Journal, 12(1):1–24, 1972. (Cited on

page 5.)

D. M. Wolpert. The real reason for brains [Video file]. Retrieved from

www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains#t-69912, 2011.

(Cited on page 2.)

D. M. Wolpert and J. Flanagan. Motor prediction. Current Biology, 11(18):729–732,

2001. (Cited on page 90.)

D. M. Wolpert, R. C. Miall, and M. Kawato. Internal models in the cerebellum.

Trends in Cognitive Sciences, 2(9):338–347, 1998. (Cited on pages 90, 99,

and 100.)

T. Xu, X. Yu, A. J. Perlik, W. F. Tobin, J. A. Zweig, K. Tennant, T. Jones, and

Y. Zuo. Rapid formation and selective stabilization of synapses for enduring

motor memories. Nature, 462(7275):915–919, 2009. (Cited on page 23.)

J. Zhang and L. F. Abbott. Gain modulation of recurrent networks. Neurocomputing,

32:623–628, 2000. (Cited on pages 23, 24, 27, and 55.)

L. Ziegler, F. Zenke, D. B. Kastner, and W. Gerstner. Synaptic consolidation: From

synapses to behavioral modeling. Journal of Neuroscience, 35(3):1319–1334,

2015. (Cited on page 5.)

165

	Introduction
	Modelling neuronal firing-rate dynamics
	Modelling recurrent neuronal networks
	The input–output gain function f
	A linear input–output gain function
	Stability of a linear dynamical system
	A nonlinear input–output gain function
	A strictly positive input–output gain function

	Network architecture
	Non-normal amplification
	Stability-optimised circuits

	Cortical motor circuits
	Why study gain modulation in cortical motor circuits?

	Global gain modulation in recurrent neuronal networks
	Introduction
	Methods
	Stability of neuronal activity
	Analytical results
	Numerical results

	Relationship between eigenvalues and changes in neuronal gain and time constant
	Effects of global gain modulation on transient neuronal activity
	Global gain modulation correlates with network output variability
	Conclusions and discussion
	Definitions and theorems
	Main analytical result from Chapter 2 and proof
	Supplementary figures

	Single-neuron gain modulation
	Introduction
	Methods
	Neuronal dynamics
	Creating target network outputs reminiscent of muscle activity
	Network output

	Effects of changing the gain of one neuron in a recurrent neuronal network
	A reward-based learning rule for single-neuron input–output gains
	Learning novel network outputs through gain modulation
	Learning through gain modulation in different models
	Investigating the effects of more strongly nonlinear neuronal dynamics
	Conclusions and discussion
	Supplementary simulation details for Fig. 3.4
	Alternative learning rule

	Coarse, group-based learning of neuronal gains
	Methods
	Generating groups for group-based gain modulation

	Learning one target movement
	Learning multiple movements using a fixed grouping
	Effects of network size when learning with random groups
	Increasing task complexity
	Conclusions and discussion
	Supplementary simulation details
	Details for Fig. 4.2
	Details for Fig. 4.4

	Learned gain patterns can provide motor primitives for novel movements
	Methods
	Creating libraries of learned movements

	Learned gain patterns can be combined to generate new desired movements
	Analysis of linear combinations of gain patterns and their associated neuronal dynamics
	Conclusions and discussion
	Supplementary simulation details
	Supplementary figures

	Gain modulation can control movement speed
	Introduction
	Methods
	Neuronal dynamics
	Creating target muscle activity
	Network output

	Learning slow-movement variants through gain modulation
	Training using our learning rule
	Training using back-propagation
	Controlling the speed of multiple movements associated with different initial conditions

	Smoothly controlling the speed of movements
	Joint control of movement shape and speed through gain modulation
	Learning gain-pattern primitives to control movement shape and speed
	Conclusions and discussion
	Supplementary simulation details
	Details for Fig. 6.2
	Details for Fig. 6.3
	Details for Fig. 6.4
	Details for Figs. 6.5, 6.10, and 6.11

	Supplementary figures

	Conclusions and future work
	Appendix Solution of linear neuronal dynamics using eigenvectors and eigenvalues
	Appendix Eigenvalues of a matrix following addition of a diagonal matrix
	Appendix Algorithmic procedure for generating stability-optimised circuits and finding preferred initial conditions
	Creating stability-optimised circuits
	Finding preferred initial conditions

	Appendix Measuring error in network output
	Bibliography

